Robust Vehicle Lane Keeping Control with Networked Proactive Adaptation
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133-car pile up on icy highway
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* Prediction quality is determined by limited prior knowledge
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FIXED RANK RESILIENT FILTERING (FRRF)

Weather forecasts 1 Spatial rela}on between area
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I Modeling uncertainty

Fixed rank model

Recursive fixed rank filter

Properties
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PROACTIVE CONTROLLER DESIGN

Vehicle lateral model
= AV,C¢,Ca+ b(Cr)u+ g(V,Cy, C)ptes

1 System matrices depend on the longitudinal velocity and cornering stiffness

Obtain the uncertainty model by propagating estimation uncertainty (u = —Kx + u,y4)

#(t) = Ama(t) + by (Wieq(t) + 0" 2(t) + o(t))
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. £ adaptive controller

as large as CPU permits.
 The low pass filter design trade-offs between the performance and robustness.

Common Lyapunov approach: Stability
A +b 07 bow condition for all velocity ranges. This
kg7 _Jp | Hurwitz  gives a freedom to choose velocity later.
\ An (V)P4 PA, (V) <0

Filter gain

Stability condition:
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LONGITUDIANL VELOCITY DESIGN

CONTROLLER UPDATE

Robustness constraint

max V
kave[‘/minavmax]

st |IG(s)||z, < Agp! for Yw € Q

k =argmin, |k — k.|
s.t. A,(V) being Hurwitz, k < k

Tracking performance constraint
* Reference system A,, and A; must be

Hurwitz stable for all uncertainty ranges.
A,, does not depends on the uncertainty
bound, i.e., no tuning required.

Given posterior distribution, we update
control gain k to guarantee Ay is Hurwitz.

SIMULATION: FRRF

k T: Better tracking performance, time-delay | °
margin decreases.

Lateral controller is designed for all velocities. | *
The velocity determines performance.
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Prior estimation heat map (mean)

Prior estimation performance

 FRRF generates prior estimation heatmap characterized by mean and variance.
* Estimation performance has been compared with full measurement and sparse
measurements in the presence of modeling uncertainty.

SIMULATION: PROACTIVE ADAPTIVE CONTROL (CURVY ROAD)
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* Proactive control maintains desired transient 55 |

and steady state performance for all ool

environmental conditions. - sl
* The velocity design program provides maximum o | | | | |

safe velocity. 2 3 4 5 6 7 8
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