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Abstract

The recent decade has been critical in designing and deploying cyber-physical

systems (CPS). CPS Security and CPS safety often are essential. The re-

search proposed in this dissertation aims to enable safe operation for cyber-

physical systems (CPS) subject to significant uncertainties, such as malicious

attacks, unforeseen environments, and model uncertainties, by integrating

resilient estimation algorithms and safe control methods. First, we consider

the problem of a safety-constrained control architecture design against GPS

spoofing/jamming attacks. We develop a resilient estimation algorithm to

detect attacks and design control algorithms based on the model predictive

controller (MPC) subject to limited sensor availability due to the sensor at-

tacks. In another scenario of actuator attacks, we propose a constrained

attack-resilient estimation algorithm (CARE) against the CPS attacks. The

CARE can simultaneously estimate the compromised system states and the

attack signals. In particular, CARE first provides minimum-variance unbi-

ased estimates and then projects the estimates onto the constrained space

induced by physical constraints and operational limitations. The proposed

CARE performs better in estimation and attack detection by reducing es-

timation errors, covariances, and false negative rates. Following that, we

extend our resilient estimation algorithm to a spatio-temporal framework.

Building on the proposed resilient spatio-temporal filtering, we design a

proactive adaptation architecture for connected vehicles in unforeseen envi-
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ronments, synthesizing techniques in spatio-temporal data fusion and robust

adaptive control. Finally, we propose an efficient interval estimation method

for estimating systems under faulty model uncertainties. The method applies

to a broad class of systems with a large uncertainty setup.
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Chapter 1

Introduction

Cyber-physical systems (CPS) and their safety-critical applications have grown

exponentially in recent decades, from large-scale industrial systems to au-

tonomous systems. For instance, smart grids, transportation networks, un-

manned aerial vehicles (UAVs), and self-driving cars are transforming the

way we live and work. While the cyber and physical components of CPS are

tightly connected, unlike traditional physical systems, the research in CPS in-

corporates interdisciplinary approaches, combining concepts from computer

science, information theory, distributed systems, and control theory. The

integration of the aforementioned technologies induces unprecedented com-

plex system behaviors, making it challenging to achieve safe operation for

CPS under uncertainties. Malicious attacks on cyber infrastructures are one

of the significant uncertainties which have become common daily, posing a

constant threat to our nation’s security and well-being. Cyber attacks have

clearly illustrated their susceptibility and raised awareness of the security

challenges. These include attacks on large-scale critical infrastructures, such

as the German steel mill cyber attack [1], the Maroochy Water breach [2],

and the StuxNet virus attack on an industrial supervisory control and data

acquisition (SCADA) system [3]. The goal of all these cyber attacks is to

deceive the control and monitoring mechanisms, potentially causing the sys-

tem to become unstable and malfunction, resulting in catastrophic physical

damage.
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Figure 1.1: Autonomous vehicles suffering from malicious attacks, unfore-
seen environments, and model uncertainties.

Autonomous vehicles, such as UAVs and self-driving cars, are one of the

fast-growing safety-critical applications of CPS, and they are also not im-

mune to such attacks. Similarly, malicious attacks on avionics and auto-

motive vehicles have been reported, such as the global positioning systems

(GPS) attack on the U.S. drone RQ-170 in Iran [4], and disabling the brakes

and stopping the engine on civilian cars [5, 6]. Furthermore, safe operation

for autonomous vehicles remains challenging because autonomous vehicles

typically operate in dynamic environments with unforeseen challenges. For

instance, the state of the road is an important environmental factor for au-

tonomous vehicle control. A significant change in road condition from the

nominal status creates uncertainties and can lead to system failures. When

a vehicle encounters an uncertain environment, such as an ice patch, it is too

late and not allowed to reduce the speed, and the vehicle can lose control.

Moreover, the safe operation of autonomous vehicles depends on the current

state and the accuracy of the dynamic modeling. In practice, state estimates

may fail to converge to the true state in the presence of model uncertainties,

resulting in potentially hazardous situations. A notable example is the inci-
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dent of Miracle on the Hudson [7]. After a bird strike caused all engines to

fail, Captain Sullenberger (Sully) made the correct decision by landing the

plane on the Hudson River rather than attempting to land at any airport,

saving all the lives of the 155 people on board. Sully is a well-trained and

experienced pilot who could resiliently estimate the parameters of the com-

promised model and safely land the plane in the nearby Hudson River. The

Challenges of resilient estimation and safe control design in autonomous ve-

hicles to achieve safety when dealing with such model uncertainties must be

ideally handled by the autonomy architecture. Figure 1.1 depicts the scenar-

ios of autonomous vehicles under significant uncertainties such as malicious

attacks, unforeseen environments, and model uncertainties. In light of the

above, this dissertation is dedicated to addressing the security and safety

issues raised by various uncertainties. The research aims to robustly achieve

safe operation for CPS by developing resilient estimation and safe control

algorithms and architectures built on solid theoretical foundations. The fol-

lowing presents an overview of the attack detection and resilience estimation

of CPS.

Because the cyber and physical components of CPS are inextricably

linked, safety can only be achieved if security is assured; therefore, the attack

detection mechanism in CPS is the first line of defense for safety. Tradition-

ally, most research in the field of attack detection has concentrated solely

on monitoring cyber-space misbehavior [8]. With the emergence of CPS, it

is critical to monitor physical misbehavior as well because the impact of the

attack on physical systems must also be addressed [9]. In the last decade,

attention has been drawn from the perspective of the control theory that

exploits some prior information on the system dynamics for detection and

attack-resilient control. For instance, a unified modeling framework for CPS
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and attacks is proposed in [10]. A typical control architecture for the net-

worked system under both cyber and physical attacks is proposed in [11];

then attack scenarios, such as Denial-of-Service (DoS) and false-data injec-

tion (FDI) are analyzed using this control architecture in [12].

In recent years, model-based detection has been tremendously studied.

Attack detection has been formulated as an ℓ0/ℓ∞ optimization problem,

which is NP-hard [13]. A convex relaxation has been studied in [14]. Fur-

thermore, the worst-case estimation error has been analyzed in [15]. Multi-

rate sampled data controllers have been studied to guarantee detectability

in [16] and to detect zero-dynamics attacks in [17]. A residual-based detec-

tor has been designed for power systems against false-data injection attacks,

and the impact of attacks has been analyzed in [18]. In addition, some pa-

pers have studied active detection, such as [19, 20], where the control input

is watermarked with a pre-designed scheme that sacrifices optimality. The

aforementioned methods have the problem that the state estimate is not

resilient concerning the attack signal, and incorrect state estimates conse-

quently make it more challenging for defenders to react to malicious attacks.

Attack-resilient estimation and detection problems have been studied to

address the above challenge in [21, 22, 23], where attack detection has been

formulated as a simultaneous input and state estimation problem, and the

minimum-variance unbiased estimation technique has been applied. More

specifically, the approach has been applied to linear stochastic systems in [21],

stochastic random set methods in [22], and nonlinear systems in [23]. These

detection algorithms rely on statistical thresholds, such as the χ2 test, which

is widely used in attack detection [20, 24]. Since the detection accuracy

improves when the covariance decreases, a smaller covariance is desired.

On top of the minimum-variance estimation approach, the covariance
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Figure 1.2: Overview of the contributions. Proposed methods on the left
and right are related to resilient estimation and safe control, respectively.
Theoretical research developments are at the bottom, and applications are
at the top.

can be further reduced when we incorporate the information of the input

and state in terms of constraints. There have been several investigations on

Kalman filtering with state constraints [25, 26, 27, 28]. The state constraints

are induced by unmodeled dynamics and operational processes. Some of these

examples include vision-aided inertial navigation [29], target tracking [30]

and power systems [31]. Constraints on inputs are also considered, such as

avoiding reachable dangerous states under the assumption that the attack

input is constrained [32] and designing a resilient controller based on the

partial knowledge of the attacker in terms of inequality constraints [33]. The

methods in [32, 33] can efficiently be used to maneuver a class of attacks when

input inequality constraints are available but cannot resiliently address the

estimation problem due to the false-data injection. This problem remains to

be solved with a stability guarantee in the presence of inequality constraints.
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1.1 Contributions and Dissertation

Organization

This dissertation contributes at multiple levels, as depicted in Figure 1.2.

At the lowest level, this dissertation presents two novel resilient estimation

techniques for improving estimation accuracy under adversarial perturba-

tions and model uncertainties with a stability guarantee. At a higher level,

this dissertation proposes corresponding safe control solutions supported by

the proposed resilient estimation methods for autonomous vehicles under

significant uncertainties. Furthermore, at the highest level, this dissertation

contributes to improving cyber security and physical safety in CPS through

resilient estimation and safe control architecture designs.

Security Safety

Safe
Control

Resilient
Estimation Chapter 3 Chapter 4 Chapter 6

Chapter 5

Chapter 2

Case study

Dissertation Outline

Figure 1.3: This dissertation is structured around two disjunctions: security
vs. safety on the one hand, and resilient estimation vs. safe control on the
other dimension.

The dissertation outline is summarized in Figure 1.3. The detailed con-

tributions and organization are listed as follows.

• Chapter 2 presents a case study of resilient estimation and safe control
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design for UAVs in GPS denied environments. The first contribution

is in providing solutions from attack detection to control strategy by

proposing a safety constrained control framework. In the framework,

we design an attack-resilient monitor for detecting the attack and esti-

mating the system state. On the other hand, an attacker location track-

ing algorithm (ALT) is developed to estimate the attacker’s location

and find the effective range. Using the estimates obtained by ALT, we

design and compare model predictive control (MPC)-based controllers

that re-plan the UAV trajectory to escape the effective range. The

framework has been extended to multi-UAV systems for time-critical

coordination tasks. Simulation examples are provided to illustrate the

effectiveness of the designs.

• In Chapter 3, we propose a constrained attack-resilient estimation al-

gorithm (CARE). The main contributions of this chapter can be sum-

marized as follows. i) The proposed CARE can simultaneously estimate

the compromised system states and attack signals. CARE first pro-

vides minimum-variance unbiased estimates, and then they are pro-

jected onto the constrained space induced by information aggregation.

ii) The proposed CARE has better estimation performance. The projec-

tion strictly reduces the estimation errors and covariances. iii) We are

the first to investigate the stability of the estimation algorithm with

inequality constraints and prove that the estimation errors are practi-

cally exponentially stable in mean square. iv) The proposed CARE has

better attack detection performance. We provide rigorous analysis that

the false negative rate is reduced by using the proposed algorithm. v)

The proposed algorithm is compared with the state-of-the-art method
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to show the improved estimation and attack detection performance.

• In Chapter 4, the proposed fixed rank resilient filter (FRRF) deals

with computational complexity and model accuracy problems in spatio-

temporal data fusion. The strategy is to improve the computational

efficiency using spatio-temporal models defined on a fixed dimensional

space. However, getting an exact model of the fixed dimensional space

is difficult. The proposed design extends the spatio-temporal fixed rank

filter to capture model uncertainty and unmodeled biased noises in the

fixed dimensional space. We show the stability of the FRRF when each

measurement is obtained as a Poisson arrival process. In addition, we

apply the method to estimate environmental factors for autonomous

vehicles by synthesizing weather forecasts and local measurements from

anonymous vehicles. Simulation examples are provided to validate the

theoretical findings.

• In Chapter 5, the results on FRRF design are extended by designing

a novel network-enabled proactive control architecture for autonomous

vehicles that systematically deals with a large-scale uncertainty at the

proactive design level and a small-scale uncertainty at the robust feed-

back control level. The estimates of the environmental factor con-

sidered in Chapter 4 contribute to designing a robust controller for

adaptation to environmental uncertainties. We provide the systematic

proactive-design procedure for the L1 robust adaptive controller for lat-

eral vehicle control, containing many design parameters and complex

propagated uncertainties. Simulation scenarios for vehicles on different

road conditions are provided to validate the theoretical findings.

• Chapter 6 presents a novel interval estimation method. The first con-
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tribution is the formulation of state estimation error dynamics as two

positive systems. The gains that minimize the upper and maximize

lower bounds can be efficiently solved using the linear programming

optimization method. The proposed method is compared with the in-

terval observer and a set-membership method to show the proposed

method’s estimation accuracy and computational efficiency. Further-

more, we extend the method to a class of systems with a large uncer-

tainty setup.

• Concluding remarks and future research directions are provided in

Chapter 7.

List of publications

• Wan, W., Kim, H., Hovakimyan, N., Voulgaris, P. G., and Sha, L.. Re-

silient Estimation and Safe Planning for UAVs in GPS Denied Environ-

ments. Advances in Control of Autonomous Aerial Vehicles, Springer. [To

appear] (Used in Chapter 2)

• Wan, W., Kim, H., Hovakimyan, N.. (2022) Towards Trustworthy Auton-

omy: Reliable and Efficient Interval Estimation and Learning for Robust

Model Predictive Control. In The 36th AAAI Workshop on Trustworthy

Autonomous Systems Engineering. (Used in Chapter 6)

• Wan, W., Kim, H., Hovakimyan, N., and Voulgaris, P. (2022). Con-

strained Attack-resilient Estimation of Stochastic Cyber-physical Systems.

arXiv preprint arXiv:2109.12255. (Used in Chapter 3)

• Wan, W., Kim, H., Cheng, Y., Hovakimyan, N., Voulgaris, P. G., and

Sha, L.. (2021) Safety Constrained Multi-UAV Time Coordination: A Bi-

9



level Control Framework in GPS Denied Environment. In AIAA Aviation

Virtual Forum, p. 2463. (Used in Chapter 2)

• Kim, H., Wan, W., Hovakimyan, N., Sha, L., and Voulgaris, P.G.. (2021)

Robust Vehicle Lane Keeping Control with Networked Proactive Adapta-

tion. In 2021 American Control Conference (ACC), pp. 136-141. (Used

in Chapters 4 and 5)

• Wan, W., Kim, H., Hovakimyan, N., Sha, L., and Voulgaris, P. G.. (2020)

A Safety Constrained Control Framework for UAVs in GPS Denied Envi-

ronment. In IEEE 59th Conference on Decision and Control (CDC), pp.

214-219. (Used in Chapter 2)

• Wan, W., Kim, H., Hovakimyan, N., and Voulgaris, P. G.. (2019) Attack-

resilient Estimation for Linear Discrete-time Stochastic Systems with In-

put and State Constraints. In IEEE 58th Conference on Decision and

Control (CDC), pp. 5107-5112. (Used in Chapter 3)

• Yoon, H. J., Wan, W., Kim, H., Hovakimyan, N., Sha, L., and Voul-

garis, P. G.. (2019) Towards Resilient UAV: Escape Time in GPS Denied

Environment with Sensor Drift. In 21st IFAC Symposium on Automatic

Control in Aerospace, IFAC-PapersOnLine, 52(12), 423-428. (Used in

Chapter 2)

Collaborations not presented in this dissertation

• Tao, C., Wan, W., Kim, H., Pan, Z., and Hovakimyan, N. (2023). Sampling-

based Resilient Control Barrier Functions for Uncertain Nonlinear Sys-

tems. AIAA SciTech. [To appear]

10



• Yang, J., Kim, H., Wan, W., Hovakimyan, N., and Vorobeychik, Y. (2023).

Certified Robust Control under Adversarial Perturbations. [Under review]

• Kim, H., Yoon, HJ., Wan, W., Hovakimyan, N., Voulgaris, P. G., and

Sha, L.. (2021) Backup Plan Constrained Model Predictive Control. In

IEEE 60th Conference on Decision and Control (CDC), pp. 289-294.

11



Chapter 2

Safe Control for UAVs in GPS
Denied Environments

Unmanned aerial vehicles (UAVs) are cyber-physical systems (CPS) and have

been used worldwide for commercial, civilian, and educational applications

over the decades. A UAV architecture typically consists of three main ele-

ments: unmanned aircraft, the ground control station (GCS), and the com-

munication data link (CDL) [34]. Moreover, the aircraft consists of a flight

controller, sensors, and actuators. The physical components of UAVs use

a network to communicate with the GCS via the CDL. As a result, UAV

systems are vulnerable to attacks that target either the cyber or physical

elements or a combination of both [35]. Most security attacks against the

different components of the UAV system can potentially lead to taking over

control or crashing the aircraft. First, attacks on CDL are an essential class

of attacks that can violate the communication between the UAV and the

GCS. For instance, the attacks that include denial of service, GCS signal

jamming/spoofing, and unauthorized communication disclosure have been

studied in [36, 37, 38], respectively. On the other hand, attacks do not involve

the CDL, such as malicious hardware or software trojans. Maldrone [39], for

example, is a virus that enables the attacker to control the UAV by acting

as a proxy for the flight controller. Furthermore, sophisticated attack aims

to take over the control by combining the attacks on both CDL and flight

controller. A malicious GPS attack on U.S. drone RQ-170 has been reported

in [4], where the attacker started to attack CDL first and then carried on

12



with an attack on the flight controller by spoofing the GPS signal.

One of the most effective GPS spoofing attack detection techniques is to

analyze raw antenna signals or utilize multi-antenna receiver systems. The

GPS spoofing attack can be detected by checking whether the default radia-

tion pattern is changed in [40]. A multi-antenna receiver system was used to

detect GPS spoofing attacks by monitoring the angle-of-arrival of the spoof-

ing attempts in [41]. As an extension of this work, GPS spoofing mitigation

has also been investigated where an array of antennas is utilized to obtain

genuine GPS signals by spatial filtering [42, 43, 44]. However, those solutions

require hardware modifications or low-level computing modules and assume

that attackers can only use single-antenna spoofing systems. Furthermore,

the attacker can spoof the GPS receivers without being detected if multi-

antenna spoofing devices are available [45].

The biggest challenge remains how to encrypt GPS since it is very costly

and requires complex software or/and hardware modification. This chap-

ter introduces an alternative approach from a control theoretic perspective

through a safety-constrained control framework that adapts UAVs at a path

re-planning level to support resilient state estimation against GPS spoofing

attacks.

13



2.1 Problem Formulation

Consider the discrete-time stochastic system model:

xk = Axk−1 +Buk−1 +wk−1 (2.1a)

yGk = CGxk + dk + vGk (2.1b)

yIk = CI(xk − xk−1) + vIk (2.1c)

ySk =


CS ηk

d(xa
k,xk)2

+ vSk , under the attack

ηS + vSk , otherwise
, (2.1d)

where xk ∈ Rn is the state. System matrices A, B, CG, CI and CS are

known and bounded with appropriate dimensions. There are three types of

outputs available. Output yGk ∈ RmG is the GPS measurement which may be

corrupted by unknown GPS spoofing signal dk ∈ RmG . The signal dk is in-

jected by the attacker when the UAV is in the effective range of the spoofing

device. Output yIk ∈ RmI is the inertial measurement unit (IMU) measure-

ment which returns a noisy measurement of the state difference. Output

ySk ∈ RmS represents the GPS signal strength. The defender is unaware of

xak and ηk, where xak ∈ Rn is the unknown attacker location, and ηk ∈ RmS

is the nominal power of the spoofing device. If GPS is under attack, ySk

is an inverse function of the distance between the attacker and the UAV.

The function d(a, b) measures the distance between a and b. If the UAV

receives genuine GPS signals, this output represents the genuine GPS signal

strength ηS. We assume that the attacker can inject any signal dk into yGk .

The noise signals wk, vGk , vIk, and vSk are assumed to be independent and

identically distributed Gaussian random variables with zero means and co-

variances E[wkw
⊤
k ] = Σw ≥ 0, E[vGk (vGk )⊤] = ΣG > 0, E[vIk(vIk)⊤] = ΣI > 0,
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and E[vSk (vSk )⊤] = ΣS > 0, respectively.

Remark 2.1 The sensor measurement yIk represents any relative sensor

measurement, such as velocity measurement by a camera. In this chapter,

we use IMU for the illustration.

Remark 2.2 The signal strength output ySk in Equation (2.1d) is derived by

the GPS signal attenuation due to free-space path loss. Friis transmission

equation [46] is given by:

Pr = PtGtGr
λ2

(4πr)2
,

where Pt and Pr are the transmit power and the receive power, Gt and Gr

are the transmit and receive antenna gains, r is the distance between two

antennas, λ is the wavelength. We write Gr(
λ
4π
)2 as the output matrix CS,

GtPt as the nominal power of the spoofing device ηk, and r as the distance

between the attacker and the UAV, i.e., d(xak,xk).

Problem Statement 2.1 Given the system in Equation (2.1) with sensor

measurements Equations (2.1b) to (2.1d), the defender aims to detect the

GPS spoofing attack, achieve resilient state estimation when considering the

limited sensor availability, and complete the global mission securely.

2.2 Methods

To address the problem described in Problem Statement 2.1, we propose

a safety constrained control framework in Figure 2.1, which consists of an

attack detector, a resilient state estimator, a robust controller, an attacker

location tracker (ALT), and an escape controller (ESC). The proposed safety
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constrained control framework drives the UAV to the outside of the effective

range of the spoofing device. The following explains each module in the

proposed framework as shown in Figure 2.1.

Figure 2.1: A safety constrained control framework consisting of an attack
detector, a resilient state estimator, a robust controller, an ALT, and an
ESC.

Robust Control Mode. The robust controller is a complex controller that

operates the UAV to the destination in the presence of noise but without

the presence of attacks. Any robust control technique can be implemented

in this module.

Emergency Control Mode. ALT is designed for tracking the attacker’s

location and estimating the spoofing device’s output power by applying UKF

with sliding window outputs. ESC is an MPC-based controller that drives the

UAV out of the effective range of the spoofing device based on the estimation

of the attacker location obtained by ALT.

Attack-resilient Monitor & Decision Logic. The resilient state estimator

is developed based on the Kalman-filter-like state estimator. The attack

detector is designed by the χ2-based anomaly detection algorithm. Based

on the previous estimation from the resilient state estimator, the Boolean

output (dotted-dashed line in Figure 2.1) of the attack detector determines
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i) whether the GPS measurement should be used for the state estimation;

and ii) the switching rule between two control modes: the robust control

mode and the emergency control mode.

ALT and ESC adapt the UAV at a path re-planning level for safe oper-

ation. In what follows, each subsection describes a new resilience measure,

escape time, and the details of the corresponding component.

Escape Time

It has been revealed in Theorem 4.2 in [47] that the state estimation becomes

less trustful if GPS signals are compromised for a long time. Therefore, the

UAV should escape from the GPS spoofing device at a certain time before the

estimation becomes unreliable. The definition of the escape time is provided

as follows for completeness.

Definition 2.1 (Escape time) The escape time kesc ≥ 0 is the time dif-

ference between the attack time ka and the first time instance when the esti-

mation error xk − x̂k may not be in a tolerable error distance ζ ∈ Rn with

the significance α, i.e.

kesc = arg min
k≥ka

k − ka

s.t. ζ⊤P−1
k ζ < χ2

df (α),

where Pk ≜ E[(xk − x̂k)(xk − x̂k)
⊤] is the error covariance, and χ2

df (α) is

the χ2 value with degree of freedom df and statistical significance level α.

The escape time calculation is presented in Algorithm 1. Given the attack

time ka, the state estimation errors may not remain in the tolerable region

with the predetermined confidence α after the escape time kesc.
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Algorithm 1 Escape time calculation
Require:ka, α, df , ζ;
Ensure:kesc;

1: k = ka;
2: while ζ⊤P−1

k ζ > χ2
df (α) do

3: k = k + 1;
4: end while
5: kesc = k − ka;

Resilient Estimation and Attack Detection

The following Kalman-filter-like state estimator is used to estimate the cur-

rent state. The state estimate x̂k can be obtained by

x̂k = x̂−
k +KG

k (y
G
k −CGx̂−

k ) +KI
k

(
yIk −CI(x̂−

k − x̂k−1)
)
, (2.2)

where x̂−
k ≜ Ax̂k−1+Buk−1 is the priori state estimate. The state estimation

error covariance Pk is given as follows:

Pk =(A−KkCA+KkDC)Pk−1(A−KkCA+KkDC)⊤

+ (I −KkC)Σw(I −KkC)⊤ +KkΣyK
⊤
k , (2.3)

where Kk ≜
[
KG

k KI
k

]
, C ≜

 CG

CI

, Σy ≜

 ΣG 0

0 ΣI

, and D ≜

 0 0

0 I

.

The optimal gain Kk is obtained by minimizing the trace of Pk, i.e.

min
Kk

tr (Pk). (2.4)
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The solution of Equation (2.4) is given by

Kk =(APk−1(CA−DC)⊤ +ΣwC
⊤)

×
(
(CA−DC)Pk−1(CA−DC)⊤ + CΣwC

⊤ +Σy

)−1
. (2.5)

In [47], it has been shown that the covariance in Equation (2.3) is bounded

when the GPS signal is available. If the GPS is denied, and only the relative

sensor yIk is available, the covariance is strictly increasing and unbounded in

time. That is, the sensor drift problem can be formulated as instability of

the covariance matrix.

The defender implements an estimator and χ2 detector to estimate the

state and detect the GPS spoofing attack. To be specific, we detect the GPS

spoofing attacks by χ2 test (see Appendix A) using CUSUM (CUmulative

SUM) algorithm. Since dk = yGk − CGxk − vGk , given the previous state

estimate x̂k−1, we estimate the attack vector by comparing the sensor output

and the output prediction:

d̂k = yGk −CG(Ax̂k−1 +Buk−1). (2.6)

Note that the current estimate x̂k should not be used for the prediction

because it is correlated with the current output; i.e., E[x̂k(yGk )⊤] ̸= 0. Due to

the Gaussian noises wk and vk injected to the linear system in Equation (2.1),

the states follow Gaussian distribution since any finite linear combination of

Gaussian distributions is also Gaussian. Similarly, d̂k is Gaussian as well,

and thus the use of the χ2 test is justified. In particular, the χ2 test compares
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the normalized attack vector estimate d̂⊤
k (P

d
k )

−1d̂k with χ2
df (α):

accept null hypothesis H0, if d̂⊤
k (P

d
k )

−1d̂k ≤ χ2
df (α)

accept alternative hypothesis H1, if d̂⊤
k (P

d
k )

−1d̂k > χ2
df (α),

(2.7)

where P d
k ≜ E[(dk− d̂k)(dk− d̂k)

⊤] = CG(APk−1A
⊤+Σw)(C

G)⊤+ΣG, and

χ2
df (α) is the threshold found in the Chi-square table. We use the test Equa-

tion (2.7) in a cumulative form. The proposed χ2 CUSUM detector is char-

acterized by the detector state Sk ∈ R+:

Sk = δSk−1 + d̂⊤
k (P

d
k )

−1d̂k, S0 = 0, (2.8)

where 0 < δ < 1 is the pre-determined forgetting factor. At each time k, the

CUSUM detector Equation (2.8) is used to update the detector state Sk and

detect the attack.

The attack detector will i) update the estimated state x̂k and the error

covariance Pk in Equation (2.3) with KG
k = 0 and ii) switch the controller

to ESC, if

Sk >
∞∑
i=0

δiχ2
df (α) =

χ2
df (α)

1− δ
. (2.9)

If Sk <
χ2
df (α)

1−δ , then it returns to the robust control mode.

Remark 2.3 As shown in Figure 2.2, the resilient state estimation uses the

GPS measurement and the IMU measurement to estimate the state by Equa-

tion (2.2) for the detection purpose as in Equation (2.6). When the GPS

attack is detected, only the IMU measurement is used to estimate the state

for the control purpose as in Equation (2.2) and Equation (2.3) with KG
k = 0.
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Figure 2.2: Resilient state estimator. GPS and IMU measurements are
used in estimator one (Est. 1). Estimator two (Est. 2) only uses the IMU
measurement. Est. 1 is used to estimate the state by Equation (2.2) for
the detection as in Equation (2.6). When GPS is free of attacks, Est. 1 is
also used to estimate the state for the control since the GPS measurement is
trustful. In the presence of the GPS attack, Est. 2 is used for the control.

Attacker Location Tracking

We formulate the simultaneous estimation of the attacker location xak and

unknown parameter ηk as a target tracking problem of the attacker state

xak ≜ [(xak)
⊤,ηk]

⊤.

Estimating the attacker state xak encounters two major problems: i) the

output equation ySk in Equation (2.1d) is highly nonlinear, and ii) a sin-

gle measurement of the signal strength suffers from the infinite number of

solutions.

To address the first issue, we use the UKF [48, 49], which has been devel-

oped to deal with highly nonlinear systems and provides a better estimation

than the extended Kalman filter. Motivated by the fact that locating the

epicenter of an earthquake can be done with at least three measurements

from different seismic stations, we resolve the second issue by using M -sized
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sliding window outputs, as shown in Figure 2.3. To be specific, we estimate

Figure 2.3: Attacker location tracking using M -sized sliding window out-
puts.

xak+1 using UKF with M -sized sliding window outputs:

xak+1 = xak + wa
k (2.10a)

ySk =



ySk

ySk−1

...

ySk−M+1


. (2.10b)

The signal strength measurements from Equation (2.1d) can be written as

ySk = f(xak) + vSk ,

where

f(xak) ≜ CS ηk
d(xak,xk)

2
.

The state estimation by using UKF with sliding window outputs can track

the location of the moving attacker, while nonlinear regression algorithms

may fail to track it. The algorithm design and detailed derivation can be
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found in Appendix B.

Safe Control Design

Escape Controller (ESC)

In the presence of the GPS spoofing attack, the variance of the state esti-

mation errors Pk in Equation (2.3) is strictly increasing and unbounded in

time (Theorem 4.2 [47]). The goal of ESC is to drive the UAV outside of

the effective range of the spoofing device within the escape time so that the

state estimation error remains within the tolerable region with a predeter-

mined probability. In particular, ESC is designed to drive the UAV outside

the spoofing device’s effective range within the escape time.

Given the estimates of UAV state x̂k and attacker state x̂ak with their

covariances, the problem can be formulated as a finite horizon constrained

MPC problem:

Program 2.1

min
u

ka+N∑
i=ka

ˆ̃x⊤
i+1Qi

ˆ̃xi+1 + u⊤
i Riui

s.t. x̂i+1 = Ax̂i +Bui

d(x̂aka+kesc , x̂ka+kesc)− reffect > 0 (2.11)

h(x̂i,ui) ≤ 0 (2.12)

for i = ka, ka + 1, · · · , ka +N,

where N ≥ kesc is the prediction horizon, ˆ̃xi is defined as the difference

between the state estimation and the goal state at time index i, i.e., ˆ̃xi ≜

x̂i−xgoali , Qi and Ri are symmetric positive definite weight matrices, and x̂ai
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is the estimate of the attacker location. Value reffect is the upper bound of the

effective range of the spoofing device. The constraint Equation (2.11) implies

that ESC should drive the UAV outside of the effective range of the spoofing

device. Inequality Equation (2.12) is any nonlinear constraint on the state

estimation x̂i (e.g., velocity) and the control input ui (e.g., acceleration).

Remark 2.4 The upper bound of the effective range reffect can be assumed to

be known. Due to hardware constraints, the output power/nominal strength

of the spoofing device ηk is bounded, and ηk also can be estimated by ALT.

The output power determines the effective range of the spoofing device, and

reffect can be found by

reffect = arg max
r

g(r),

where g(r) ≜ CSηk
r2

> ηS.

There are two key challenges in Program 2.1. First, the states and the

attacker location are unknown, and their estimates x̂i and x̂ai are subject

to stochastic noise. Moreover, we cannot guarantee that constraint Equa-

tion (2.11) is always feasible, i.e., Program 2.1 may not have a solution.

Addressing the above two challenges, we introduce two programs for ESC in

the following Sections.

ESC with Tube

Since the constraint Equation (2.11) is the safety-critical constraint, we can

reformulate it as a conservative constraint such that ESC should drive the

UAV outside of the effective range of the spoofing device with probability γ

by the single individual chance constraint (ICC):

P[d(xaka+kesc),xka+kesc ]− reffect > 0) > γ. (2.13)

24



Then Program 2.1 becomes a new stochastic MPC with ICC.

The chance constraints can be handled by constraint backoffs, which orig-

inate in linear MPC with additive stochastic noise [50]. However, we consider

nonlinear constraints in Program 2.1, which makes the backoff intractable to

compute. In [51], the tube is constructed based on sublevel sets of the incre-

mental Lyapunov function by online predicted tube size, and then it is used

to ensure robust constraint satisfaction by tightening the nonlinear state and

input constraints. In [52], this is extended to allow for ICCs and stochas-

tic uncertainty. Similar to [51, 52], the stochastic MPC with ICC can be

formulated as:

Program 2.2

min
u

ka+N∑
i=ka

ˆ̃x⊤
i+1Qi

ˆ̃xi+1 + u⊤
i Riui

s.t. x̂i+1 = Ax̂i +Bui

d(x̂aka+kesc , x̂ka+kesc)− reffect > s(Pka+kesc ,P
a
k , γ) (2.14)

h(x̂i,ui) ≤ 0 (2.15)

for i = ka, ka + 1, · · · , ka +N,

where Pka+kesc is the UAV state covariance at escape time, and P a
k is the

attacker state covariance. Function s(·) is the probabilistic tube size that

can be seen as a margin to fulfill the second constraint in Equation (2.11).

To provide the theoretical guarantees on the capability of Program 2.2

and the equivalence between the stochastic MPC with ICC and Program 2.2,

we use the results from [51, 52]. Since the newly formulated MPC with

ICC Equation (2.13) is the standard nonlinear stochastic MPC problem,

Assumptions in [52] can be verified.
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Theorem 2.1 Under Assumptions 1-4, 6, and 9 in [52], if Program 2.2 is

feasible at t = ka, then it is recursively feasible; the constraints in Equa-

tion (2.12) and Equation (2.13) are satisfied, and the origin is practically

asymptotically stable for the resulting closed loop system. The impact of

the hard constraint in Equation (2.14) is equivalent to the nonlinear ICCs

in Equation (2.13).

Proof: See proofs of Theorem 1 in [51] and Theorem 8 & 10 in [52]. □

From Theorem 2.1, we can conclude that as long as Program 2.2 is feasible

at the time of attack ka, we can guarantee that the UAV can escape within

the escape time in probability. However, in some cases, Program 2.2 may

not be feasible. To address this issue, we introduce a program with a soft

constraint in the subsequent section.

ESC with Potential Function

The hard constraint in Equation (2.14) can be replaced by the repulsive

potential function [53] as a high penalty in the cost function which is active

only after the escape time ka+kesc. The repulsive potential function Urep(D)

is defined as the following:

Urep(D) ≜


1
2
β
(

1
D
− 1

reffect

)2

if D ≤ reffect

0 if D > reffect

,

which can be constructed based on the distance between the location of the

attacker and the location of UAV, D ≜ d(x̂aka+kesc , x̂ka+kesc). The scaling pa-

rameter β is a large constant, which represents a penalty when the constraint

has not been fulfilled. Utilizing the soft constraint, we reformulate the MPC

problem as follows:
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Program 2.3

min
u

ka+N∑
i=ka

ˆ̃x⊤
i+1Qi

ˆ̃xi+1 + u⊤
i Riui +

ka+N∑
i=ka+kesc

Urep(Di)

s.t. x̂i+1 = Ax̂i +Bui

h(x̂i,ui) ≤ 0

for i = ka, ka + 1, · · · , ka +N.

Remark 2.5 Comparing to the use of the repulsive potential function Urep

in the collision avoidance literature [54, 55, 56], the proposed application of

the repulsive potential function in Program 2.3 has two differences. First of

all, the repulsive potential function is known before the collision happens in

collision avoidance literature, while we can only get the repulsive potential

function Urep after the collision happens, i.e., only after the UAV has entered

the effective range of the spoofing device. Second, the repulsive potential

function Urep is only counted in the cost function in Program 2.3 after the

escape time.

2.3 Illustrative Example

In this example, the UAV is moving from the start position with the coor-

dinates at (0, 0) to the target position (300, 300) by using feedback control1,

based on the state estimate from Equation (2.2). When the GPS attack

happens, the state estimate will no longer be trustworthy. After GPS mea-

surement is turned off, the only available relative state measurement causes

the sensor drift problem [47]. The UAV will switch the control mode from
1We implemented a proportional-derivative (PD) like tracking controller, which is

widely used for double integrator systems.
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the robust control mode to the emergency control mode when the attack

is detected, using ESC to escape away from the attacker within the escape

time. We solve the problem with ESC with Potential Function described

in Program 2.3. The online computation is done using Julia, and ESC is

implemented by using JuMP [57] package with Ipopt solver.

UAV Model

We use a double integrator UAV dynamics under the GPS spoofing attack

as in [58]. The discrete-time state vector xk considers planar position and

velocity at time step k, i.e. xk = [rxk , r
y
k, v

x
k , v

y
k ]

⊤, where rxk , r
y
k denote x, y

position coordinates, and vxk , v
y
k denote velocity coordinates. We consider the

acceleration of UAV as the control input uk = [uxk, u
y
k]

⊤. We assume that the

state constraint and control input constraint are given as
√
(vxk)

2 + (vyk)
2 ≤ 5

and
√

(uxk)
2 + (uyk)

2 ≤ 2. With sampling time at 0.1 seconds, the double

integrator model is discretized into the following matrices:

A =



1 0 0.1 0

0 1 0 0.1

0 0 1 0

0 0 0 1


, B =



0 0

0 0

0.1 0

0 0.1


,

and the outputs yGk , yIk, and ySk are the position measurements from GPS,

the velocity measurements from IMU, and GPS signal strength measurements

respectively, with the output matrices:

CG =

1 0 0 0

0 1 0 0

 , CI =

0 0 1 0

0 0 0 1

 , and CS = I.
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The covariance matrices of the sensing and disturbance noises are chosen as

Σw = 0.1I, ΣG = I, ΣI = 0.01I and ΣS = I.

GPS Spoofing Attack and Attack Signal Estimation

The GPS attack happens when the UAV is in the effective range of the

spoofing device. The attack signal in this scenario is dk = [10, 10]⊤. The

location of the attacker and the nominal power of the spoofing device are

xak = [100, 100]⊤ and ηk = [200], which are both unknown to the UAV. The

estimation obtained by Equation (2.6) is shown in Figure 2.4.

Figure 2.4: Attack signal estimation. The UAV stays in the effective range
of the spoofing device from time step 231 to 356.

Attack Detection

Using the estimated attack signal to calculate the detector state Sk by Equa-

tion (2.8), the attack detector can detect the attack using the normalized

attack vector as shown in Figure 2.5. In Figure 2.5, there are abnormal high

detector state values, implying an attack. The statistical significance of the

attack is tested using the CUSUM detector described in Equation (2.9) with

the significance α at 1%.
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Figure 2.5: Attack detection. The detector state Sk is defined in Equa-
tion (2.8) of the CUSUM detector. The threshold is calculated by χ2

df (α)

1−δ with
α = 0.01 and δ = 0.15.

Attacker State Estimation

When the GPS attack is detected, the UAV first estimates the attacker state

xak by using Algorithm 4 with window size M = 5. The estimation result

is shown in Figure 2.6. The estimated location and the estimated nominal

power quickly converge to the true values. The estimates are drifting when

the UAV remains in GPS denied environment. After obtaining an estimate

of the attacker state, ESC is used to escape away from the effective range of

the spoofing device.

Figure 2.6: Attacker state estimation.

Trajectory Generation

Program 2.3 with the prediction horizon N = kesc + 40 and the scaling

parameter β = 50000 is used to generate the estimated and true trajectories
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of the simulated scenario shown in Figure 2.7. As shown in Figure 2.8, the

state estimation error ∥xk−x̂k∥ is increasing when the UAV is in the effective

range of the spoofing device, and the error is bounded by the tolerable error

distance ζ = 3 corresponding to kesc = 125.

Figure 2.7: Estimated and true trajectories of the simulated scenario. The
attacker is located at (100, 100) with reffect = 30, which is displayed as the
light blue circle.

Figure 2.8: Bounded estimation error ∥xk − x̂k∥.

Figure 2.9 presents how the proposed control framework performs in dif-

ferent cases where reffect ∈ {10, 30, 50, 70}. Regardless of the size of reffect,

the UAV will escape the effective range within the escape time.
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(a) reffect = 10 (b) reffect = 30 (c) reffect = 50 (d) reffect = 70

Figure 2.9: Trajectories with different effective ranges. In (a), the UAV
can pass the attacker without changing the direction, or even its speed since
reffect is small enough. From (b)-(d), the UAV drives away from the effective
range within the escape time and tries to get as close to the global goal as
possible.

2.4 Extension to Time Coordination Tasks

for Multi-UAV Systems

Multi-Agent Network

Let xi,k ∈ Rn, i = 1, · · · , Na be the state of the ith agent associated with

dynamic system model in Equation (2.1), where Na is the total number

of the agents. Graph theory can provide the natural abstractions for how

information is shared between agents in a network [59]. An undirected graph

G = (V,E) consists of a set of nodes V = {1, 2, · · · , Na}, which corresponds

to the different agents, and a set of edges E ⊂ V × V , which relates to a

set of unordered pairs of agents. In particular, (i, j), (j, i) ∈ E if and only if

a communication channel exists between agents i and j. The neighborhood

N (i) ⊆ V of the agent i will be understood as the set {j ∈ V | (i, j) ∈ E}.

Path Following Consensus

Each agent i ∈ V has a desired trajectory gi : si,k → Rns that is parame-

terized by coordination state variable si,k ∈ [0, 1] as shown in Figure 2.10.
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Figure 2.10: Illustration of the path following consensus. The goal of the
multi-agent system is for all agents to reach the desired goal state simulta-
neously. For the agent i at time k, the virtual target/predetermined desired
state is gi(si,k) and the true state is xi,k. The error between the virtual
target gi(si,k) and the true state xi,k (marked in red) is to be minimized.
The attacker is on the path of the agent j, and the effective spoofing area
is displayed as a light blue circle. When the attack is detected, the agent j
will be re-planning the trajectory so that the state estimation errors remain
in the tolerable region, while the other agents will adjust their coordination
states accordingly to achieve time coordination.

Dimension ns is usually 2 (2−D mission) or 3 (3−D mission).

At time k, gi(si,k) is the virtual target that the agent i follows at that

time, i.e., agent i pursues to minimize the error ∥gi(si,k) − xi,k∥ which is

marked in red in Figure 2.10. The state si,k can be seen as a normalized

length of the trajectory. The agents also desire to achieve a consensus on the

coordination state variable

si,k − sj,k
k→∞−→ 0 ∀i, j ∈ V,

so that the virtual targets of the agents arrive at the destination at the same

time. The agent i knows the coordination state si,k as well as the coordination

states sj,k for neighboring agents j ∈ N (i).
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Time Coordination Task

Given a multi-agent network consisting of number of Na agents described in

Equation (2.1), the agent i, where i = 1, · · · , Na, aims to follow its desired

trajectory gi(·) with a reference rate ρ, i.e.

gi(si,k)− xi,k
k→∞−→ 0 (2.16a)

si,k+1 − si,k
k→∞−→ ρ, (2.16b)

and to achieve time coordination, i.e.

si,k − sj,k
k→∞−→ 0 (2.17)

for all i, j ∈ V , and for all k ≥ 0. Meanwhile, each agent aims to detect

the GPS spoofing attack, obtain the attack-resilient state estimation when

considering the limited sensor availability, and complete the path following

mission securely.

Consensus Protocol

Consider the coordination state of the consensus network model

si,k+1 = si,k + zi,k, (2.18)

where zi,k ≥ 0 is the control input for the coordination state of the agent

i at time index k. To solve the path following consensus problem in Equa-

tion (2.16) and Equation (2.17), we propose the design of the control input
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zi,k. The control input zi,k is designed by

zi,k = max

−ke∥gi(si,k)− xi,k∥ − ks
∑
j∈N (i)

(si,k − sj,k) + ρ+ 1i,attackedẑi,k, 0

 ,

(2.19)

where ke > 0 and ks > 0 are coordination control gains, and the reference

rate ρ is the desired rate of progress that is a constant. The first term

−ke∥gi(si,k) − xi,k∥ indicates that the agent reduces the coordination speed

when there is a tracking error. The second term −ks
∑

j∈N (i)(si,k − sj,k)

is the consensus term which reduces errors between the local coordination

state with those of the neighbors. The third term ρ is the desired rate if

there is no tracking error and no coordination error. The last term ẑi,k =

ke∥gi(si,k) − xi,k∥ drives the virtual target away from the spoofing device

even when the UAV detours the planned trajectory. The indicator function

1i,attacked is defined as follows:

1i,attacked =


1, if an attack is detected by agent i

0, otherwise
.

Moreover, if −ke∥gi(si,k) − xi,k∥ − ks
∑

j∈N (i)(si,k − sj,k) + ρ + 1i,attackedẑi,k

is less than zero, then the virtual target chooses to stay at the current state

rather than go backward.
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Illustrative Example

Trajectory Generation and Time Coordination for Multi-UAV

Systems

The nominal trajectories of a three-UAV system gi(si,k), where i ∈ {1, 2, 3},

are generated by the cubic Bézier curves [60]:

gi(si,k) ≜ (1− si,k)3P(0)
i + 3(1− si,k)2si,kP(1)

i + 3(1− si,k)s2i,kP
(2)
i + s3i,kP

(3)
i ,

(2.20)

where si,k ∈ [0, 1] is the coordination state and P(j)
i , where j ∈ {0, 1, 2, 3},

are the control points for the agent i. The control points we used are listed

in Table 2.1.

Table 2.1: Bézier curve control points P(j)
i

i/(j) (0) (1) (2) (3)
1 [0 , 0]⊤ [100, 100]⊤ [10, 300]⊤ [190, 400]⊤

2 [200, 0]⊤ [100, 100]⊤ [250, 200]⊤ [200, 400]⊤

3 [400, 0]⊤ [450, 150]⊤ [300, 300]⊤ [210, 400]⊤

Figure 2.11a shows the trajectories generated by Equation (2.20), and

the Bézier curve control points for each agent are marked with colored dots.

Agent i aims to follow the trajectory starting from point P(0)
i and plans to ar-

rive at the destination point P(3)
i simultaneously. To achieve these goals, the

time coordination controller proposed in Equation (2.19) is used to update

the consensus network in Equation (2.18); then a proportional-derivative

(PD) tracking controller is used to track the virtual target generated by the

coordination state in Equation (2.18).

The parameters used in Equation (2.19) and the PD controller were set
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(a) Trajectories of the three
agents in dashed lines generated
by Bézier curves Equation (2.20)
using the control points summa-
rized in Table 2.1.
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(b) Path following trajectories of
three agents are plotted in solid
lines. Every three hex points con-
nected by two dotted lines indicate
the locations of three agents at the
same coordination state.

Figure 2.11: Trajectory generation and time coordination.

to the following values:

ρ =
1

1200
, ke = 0.005, ks = 0.005, kp = 0.05 and kd = 0.315,

where kp and kd are the proportional gain and the derivative gain.

Figure 2.11b shows the path following and time coordination results. A

series of locations of the three agents are plotted by the hex points. Their

connections by the dotted lines indicate that they have the same coordination

states. We can see that the time coordination and PD control are well-

designed, and all agents arrived at the goal destination simultaneously.

In the Presence of GPS Spoofing Attack

The GPS attack happens when the UAV is in the effective range of the

spoofing device. In this attack scenario, the attack signal is dk = [10, 10]⊤

and the effective range of the spoofing device is reffect = 30. The location
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Figure 2.12: Attack estimation and detection.
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Figure 2.13: Trajectory in the presence of the attack. The attacker is
located at [200, 200]⊤ with reffect = 30, which is displayed as the light blue
circle.

of the attacker is xak = [200, 200]⊤, which is unknown to the UAV until it

is inside the effective range of the spoofing device. The estimation obtained

by Equation (2.6) is shown in Figure 2.12a. The detector state Sk can be

obtained by using the estimated attack signal as in Equation (2.8). The

abnormal high detector state values shown in Figure 2.12b imply that there

is an attack. Statistical significance of the attack is tested using the CUSUM

detector described in Equation (2.9) with the significance α at 1%. The

threshold is calculated by χ2
df (α)

1−δ with α = 0.01 and δ = 0.15.

ESC in Program 2.3 with the prediction horizon N = kesc + 50 and the

scaling parameter β = 10000 is used to generate the new trajectory for safety

operation. Figure 2.13 shows the trajectory of the simulated attack scenario.
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(d) reffect = 70

Figure 2.14: Trajectories when attacker is located at [200, 200]⊤ with dif-
ferent effective ranges.

ESC drives the attacked UAV away from the effective range of the spoofing

device; time coordination is achieved, and all of the agents arrive at the

destination points simultaneously.

Figure 2.14 presents how the proposed control framework performs in

different cases where reffect ∈ {15, 50, 60, 70}. Regardless of the size of reffect,

the UAV will escape the effective range within the escape time and achieve

time coordination. In Figure 2.14a, the attacked UAV can pass the attacker

without changing the direction or even its speed since reffect is small enough.

From Figure 2.14b to Figure 2.14d, the UAV drives away from the effective

range within the escape time and tries to get back to the assigned trajectory.

2.5 Discussion

This chapter introduces an alternative approach from a control theoretic per-

spective contributing to existing GPS attack mitigation literature. Once an

attack is detected, the UAV will not use GPS signals for navigation. By using

relative sensors (e.g., IMU), the navigation needs to be more accurate due to

the sensor drift, where the navigation errors gradually increase over time. In

particular, compared to the literature on GPS anti-spoofing techniques, we

provided an end-to-end approach with the following contributions:
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• We designed a control theoretic attack detector that checks whether

the provided position information coincides with the one derived by

control theory. Therefore, any GPS attack would be detected if the

GPS signals differ from the actual ones. If the injected signals are

identical to the authentic ones, then it does not have any physical

impact, such as a crash or over-control.

• After the GPS attack is detected, we identified the safe time problem

for UAVs in GPS denied environment by formally defining the escape

time. To the best of our knowledge, We are the first to investigate the

sensor drift problem and escape time analysis.

• Using the fact that the spoofing power should be higher than the au-

thentic signal power in order to mislead the UAVs, we proposed an al-

gorithm, ALT, to obtain the attacker’s location and the effective range

resiliently by monitoring the signal strength. The proposed algorithm

also supports the safety-constrained controller designs.

• Considering the safety constraints, we designed an MPC-based con-

troller to re-plan the UAV trajectory to escape from the effect range.

When Programs 2.1 and 2.2 are not feasible, we proposed an alterna-

tive approach with the help of the potential function as in Program 2.3

to ensure that the escape controller is executable.

While this case study generated an alternative solution framework com-

pared to the antenna community, as discussed at the beginning of the chap-

ter, the proposed approach has its limitations. Although in robust control

mode, the controller can operate the UAV in the presence of noise and dis-

turbances, the assumption is that the UAV is not subject to large external

disturbances. For example, wind gusts can also affect the UAV location. The
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sudden location change could be confused for a GPS attack. Future explo-

ration to overcome these limitations involves integrating a resilient estimation

algorithm for model uncertainties, developing spatio-temporal estimation and

robust control framework to cope with unforeseen environments.
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Chapter 3

Constrained Attack-Resilient
Estimation (CARE)

In this chapter, we aim to solve the resilient estimation problem and inves-

tigate the stability and performance of the algorithm design that integrates

with information aggregation. To the best of our knowledge, this is the first

investigation that considers both state and input inequality constraints for

attack-resilient estimation with guaranteed stability.

3.1 Problem Formulation

Consider the following linear time-varying (LTV) discrete-time stochastic

system1

xk+1 = Akxk +Bkuk +Gkdk +wk (3.1a)

yk = Ckxk + vk, (3.1b)

where xk ∈ Rm, uk ∈ Rn and yk ∈ Rny are the state, the control input,

and the sensor measurement, respectively. The attack signal is modeled as

a simultaneous input dk ∈ Rnd , which is unknown to the defender. System

matrices Ak, Bk, Ck and Gk are known and bounded with appropriate

dimensions. We assume that rank(CkGk−1) = nd, 0 ≤ nd ≤ ny. This is a
1We consider a general formulation for the attack input matrix Gk. If dk is injected

into the control input, then Gk = Bk. If dk is directly injected into the system, then
Gk = I.
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typical assumption as in [61, 62]. The interpretation of this assumption is

that the impact of the attack dk−1 on the system dynamics can be observed

by yk. The process noise wk and the measurement noise vk are assumed

to be i.i.d. Gaussian random variables with zero means and covariances

Qk ≜ E[wkw
⊤
k ] ≥ 0 and Rk ≜ E[vkv⊤

k ] > 0. Moreover, the measurement

noise vk, the process noise wk, and the initial state x0 are uncorrelated with

each other.

The adopted attack model in Equation (3.1) is known as the FDI attack

that is a very general type of attack and includes physical attacks, Trojans,

replay attacks, overflow bugs, packet injection, etc [63]. Because of this

generality, this attack model has been widely used in CPS security literature

(e.g., [10, 12, 21]).

In the cyber-space, digital attack signals could be unconstrained, but

their impact on the physical world is restricted by physical and operational

constraints (i.e., xk and dk are constrained). For example, a vehicle has a

limit on acceleration, velocity, steering angle, and change of steering angle.

Any physical constraints and ability limitations on attack signals and states

are presented by the inequality constraints

Akdk ≤ bk, Bkxk ≤ ck, (3.2)

where matrices Ak, Bk, and vectors bk, ck are known and bounded with

appropriate dimensions. Throughout this paper, we assume that the feasible

sets of the constraints in Equation (3.2) are non-empty.

Remark 3.1 Gaussian noise in Equation (3.1) is one of the general ways to

model physical systems so that the filtering algorithms use this model to track

the level of uncertainties. Therefore, many pieces of work consider Gaussian
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noise even in the presence of bounded constraints [64, 25, 27].

Problem Statement 3.1 Given the stochastic system in Equation (3.1), we

aim to design an attack-resilient estimation algorithm that can simultaneously

estimate the compromised system state xk and the attack signal dk. In

addition, we seek to improve estimation accuracy and detection performance

with a stability guarantee when incorporating the information of the input

and state in terms of constraints in Equation (3.2).

Figure 3.1: Constrained Attack-Resilient Estimation (CARE).

3.2 Algorithm Design

To address Problem Statement 3.1, we propose a constrained attack-resilient

estimation algorithm (CARE), as sketched in Figure 3.1, which consists of a

minimum-variance unbiased estimator (MVUE) and an information aggre-

gation step via projection. In particular, the optimal estimation provides

minimum-variance unbiased estimates, and these estimates are projected
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onto the constrained space eventually in the information aggregation step.

We outline the essential steps of CARE and provide a detailed derivation of

the algorithm in the following.

Algorithm Statement

The proposed CARE can be summarized as follows:

1. prediction:

x̂−
k = Ak−1x̂k−1 +Bk−1uk−1; (3.3)

2. attack estimation:

d̂uk−1 =Mk(yk −Ckx̂
−
k ); (3.4)

3. time update:

x̂⋆k = x̂−
k +Gk−1d̂

u
k−1; (3.5)

4. measurement update:

x̂uk =x̂⋆k +Lk(yk −Ckx̂
⋆
k); (3.6)
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5. projection update:

d̂k−1 = arg min
d

(d− d̂uk−1)
⊤(P d,u

k−1)
−1(d− d̂uk−1)

subject to Ak−1d ≤ bk−1; (3.7)

x̂k = arg min
x

(x− x̂uk)
⊤(P x,u

k )−1(x− x̂uk)

subject to Bkx ≤ ck. (3.8)

Given the previous state estimate x̂k−1 and its error covariance P x
k−1 ≜

E[x̃k−1(x̃k−1)
⊤], the current state can be predicted by x̂−

k in Equation (3.3)

under the assumption that the attack signal dk−1 is absent. The uncon-

strained attack estimate d̂uk−1 can be obtained by comparing the difference

between the predicted output Ckx̂
−
k and the measured output yk in Equa-

tion (3.4), where Mk is the optimal filter gain that can be obtained by

applying Gauss-Markov theorem, as shown in Proposition 3.2 later. The

state prediction x̂−
k can be updated incorporating the unconstrained attack

estimate d̂uk−1 in Equation (3.5). The output yk is used to correct the current

state estimate in Equation (3.6), where Lk is the filter gain that is obtained by

minimizing the state error covariance P x,u
k . In the information aggregation

step (projection update), we apply the input constraint in Equation (3.7)

by projecting d̂uk−1 onto the constrained space and obtain the constrained

attack estimate d̂k−1. Similarly, the state constraint in Equation (3.8) is

applied to obtain the constrained state estimate x̂k. The complete algorithm

is presented in Algorithm 2.
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Algorithm Derivation

Prediction The current state can be predicted by Equation (3.3) under the

assumption that the attack signal dk−1 = 0. The prediction error covariance

is

P x,−
k ≜ E[x̃−

k (x̃
−
k )

⊤] = Ak−1P
x
k−1A

⊤
k−1 +Qk−1. (3.9)

Attack estimation The linear attack estimator in Equation (3.4) utilizes

the difference between the measured output yk and the predicted output

Ckx̂
−
k . Substituting Equation (3.1) and Equation (3.3) into Equation (3.4),

we have

d̂uk−1 = Mk

(
CkAk−1x̃k−1 +CkGk−1dk−1

+Ckwk−1 + vk
)
,

which is a linear function of the attack signal dk−1. Under the assumption

that there is no projection update, i.e., the state and attack estimates are

unconstrained, we design the optimal gain matrix Mk such that the estimate

becomes the best linear unbiased estimate (BLUE) by the following two

propositions.

Proposition 3.1 Assume that there is no projection update and E[x̃0] =

E[x̃⋆0] = 0. The state estimates x̂k and the unconstrained attack estimates

d̂uk are unbiased for all k, i.e. E[x̃k] = E[d̃uk−1] = 0, ∀k, if and only if

MkCkGk−1 = I.

Proof: Sufficiency: Assuming that MkCkGk−1 = I, the statement can

be proved by induction. First, we will show the statement holds when k = 0
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as a base case. By the definition, the errors of the time update and the

measurement update in Equation (3.5) and Equation (3.6) are given by

x̃⋆k ≜ xk − x̂⋆k = Ak−1x̃k−1 +Gk−1d̃
u
k−1 +wk−1 (3.10)

x̃uk ≜ xk − x̂uk = (I −LkCk)x̃
⋆
k −Lkvk, (3.11)

and the error of the unconstrained attack estimate is

d̃uk−1 ≜ dk−1 − d̂uk−1 = dk−1 −Mk

(
CkAk−1x̃k−1

+CkGk−1dk−1 +Ckwk−1 + vk
)

= (I −MkCkGk−1)dk−1 (3.12a)

−Mk

(
CkAk−1x̃k−1 +Ckwk−1 + vk

)
. (3.12b)

Under the assumptions that E[x̃0] = E[x̃⋆0] = 0 and the process noise and

measurement noise are zero-mean Gaussian, i.e. E[wk] = E[vk] = 0, ∀k, the

expectation of the term (3.12b) is zero at k = 1. Since dk−1 is deterministic

for all k, i.e., E[dk−1] ̸= 0, we have E[d̃u0 ] = 0 if I −M1C1G0 = 0, i.e., the

expectation of the term Equation (3.12a) is zero at k = 1. Then we have

E[x̃⋆1] = E[x̃u1 ] = 0 by applying expectation operation on Equation (3.10)

and Equation (3.11). In the inductive step, suppose E[x̃uk ] = E[x̃⋆k] = 0;

then E[d̃uk ] = 0 if Mk+1Ck+1Gk = I. Then, similarly, we have E[x̃⋆k+1] =

E[x̃uk+1] = 0 by Equation (3.10) and Equation (3.11). Since there is no

projection update, we have E[x̃k] = E[x̃uk ] = 0 ∀k.

Necessity: Assuming that E[x̃k] = E[d̃k−1] = 0 for all k, or equivalently

E[x̃uk ] = E[d̃uk−1] = 0, the statement also can be proved by induction. In

Equation (3.12), if E[d̃u0 ] = 0 for any d0, we have M1C1G0 = I. Therefore,

following a similar procedure, we can show that the necessity holds. □
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Proposition 3.2 Assume that there is no projection update and E[x̃0] =

E[x̃⋆0] = 0. The unconstrained attack estimates d̂uk are BLUE if

Mk =
(
G⊤
k−1C

⊤
k R̃kCkGk−1

)−1
G⊤
k−1C

⊤
k R̃k, (3.13)

where R̃k ≜ (CkP
x,−
k C⊤

k +Rk)
−1.

Proof: Substituting Equation (3.1a) into Equation (3.1b), we have

yk = CkGk−1dk−1

+Ck

(
Ak−1xk−1 +Bk−1uk−1 +wk−1

)
+ vk. (3.14)

Subtraction of Ckx̂k−1 on the both sides of Equation (3.14) yields

yk −Ckx̂k−1 = CkGk−1dk−1

+Ck

(
Ak−1x̃

−
k−1 +wk−1

)
+ vk︸ ︷︷ ︸

error term

. (3.15)

Since the covariances of the process noise wk−1 and the measurement noise

vk are known, with Equation (3.9), the covariance of the error term in Equa-

tion (3.15) can be expressed as CkP
x,−
k C⊤

k +Rk. Applying the Gauss-Markov

theorem (see Appendix C), we can get the minimum-variance-unbiased linear

estimator (BLUE) of dk−1 in Equation (3.4) with

Mk =
(
G⊤
k−1C

⊤
k R̃kCkGk−1

)−1
G⊤
k−1C

⊤
k R̃k,

where R̃k ≜ (CkP
x,−
k C⊤

k +Rk)
−1. □

Remark 3.2 The rank condition rank(CkGk−1) = nd is the sufficient con-

dition of MkCkGk−1 = I needed in Proposition 3.1 if Mk is found by Equa-
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tion (3.13) in Proposition 3.2.

The error covariance can be found by

P d,u
k−1 = MkR̃

−1
k M⊤

k =
(
G⊤
k−1C

⊤
k R̃kCkGk−1

)−1
.

The cross error covariance of the state estimate and the attack estimate is

P xd
k−1 = −P x

k−1A
⊤
k−1C

⊤
k M

⊤
k .

Time update Given the unconstrained attack estimate d̂uk−1, the state

prediction x̂−
k can be updated as in Equation (3.5). We derive the error

covariance of x̂⋆k as

P x⋆
k ≜ E

[
x̃⋆k(x̃

⋆
k)

⊤]
= Ak−1P

x
k−1A

⊤
k−1 +Ak−1P

xd
k−1G

⊤
k−1

+Gk−1P
dx
k−1A

⊤
k−1 +Gk−1P

d,u
k−1G

⊤
k−1 +Qk−1

−Gk−1MkCkQk−1 −Qk−1C
⊤
k M

⊤
k G

⊤
k−1,

where P dx
k−1 = (P xd

k−1)
⊤.

Measurement update In this step, the measurement yk is used to update

the propagated estimate x̂⋆k as shown in Equation (3.6). The covariance of

the state estimation error is

P x,u
k ≜E[(x̃uk)(x̃uk)⊤]

=(I −LkCk)Gk−1MkRkL
⊤
k +LkRkL

⊤
k

+LkRkM
⊤
k G

⊤
k−1(I −LkCk)

⊤

+ (I −LkCk)P
x⋆
k (I −LkCk)

⊤.
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The gain matrix Lk is obtained by minimizing the trace of P x,u
k , i.e.

min
Lk

tr(P x,u
k ).

The solution is given by

Lk = (P x⋆
k C⊤

k −Gk−1MkRk)R̃
⋆†
k ,

where R̃⋆
k ≜ CkP

x⋆
k C⊤

k +Rk −CkGk−1MkRk −RkM
⊤
k G

⊤
k−1C

⊤
k .

Projection update We are now in the position to project the estimates

onto the constrained space. Apply the first constraint in Equation (3.2) to

the unconstrained attack estimate d̂uk−1, and the attack estimation problem

can be formulated as the following constrained convex optimization problem

d̂k−1 = arg min
d

(d− d̂uk−1)
⊤W d

k−1(d− d̂uk−1)

subject to Ak−1d ≤ bk−1,

(3.16)

where W d
k−1 can be any positive definite symmetric weighting matrix. In the

current paper, we select W d
k−1 = (P d,u

k−1)
−1 which results in the smallest error

covariance as shown in [25]. From Karush-Kuhn-Tucker (KKT) conditions

of optimality, we can find the corresponding active constraints. We denote

Āk and b̄k the rows of Ak and the elements of bk corresponding to the active

constraints of Ak−1d ≤ bk−1. Then Equation (3.16) becomes

d̂k−1 = arg min
d

(d− d̂uk−1)
⊤(P d,u

k−1)
−1(d− d̂uk−1)

subject to Āk−1d = b̄k−1.

(3.17)
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The solution of Equation (3.17) can be found by

d̂k−1 = d̂uk−1 − γdk−1(Āk−1d̂
u
k−1 − b̄k−1),

where

γdk−1 ≜ P d,u
k−1Ā

⊤
k−1(Āk−1P

d,u
k−1Ā

⊤
k−1)

−1. (3.18)

The attack estimation error is

d̃k−1 = (I − γdk−1Āk−1)d̃
u
k−1 + γdk−1(Āk−1dk−1 − b̄k−1)

= d̂uk−1 − γdk−1(Āk−1d̂
u
k−1 − b̄k−1). (3.19)

The error covariance can be found by

P d
k−1 ≜ E[d̃k−1d̃

⊤
k−1]

= (I − γdk−1Āk−1)P
d,u
k−1(I − γdk−1Āk−1)

⊤ (3.20)

under the assumption that γdk−1(Āk−1dk−1 − b̄k−1) = 0 holds. Notice that

this assumption holds when the ground truth dk−1 satisfies the active con-

straint Āk−1dk−1 = b̄k−1. From Equation (3.18), it can be verified that

γdk−1Āk−1P
d,u
k−1 = γdk−1Āk−1P

d,u
k−1(γ

d
k−1Āk−1)

⊤. Therefore, from Equation (3.20)

we have

P d
k−1 =P d,u

k−1 − γdk−1Āk−1P
d,u
k−1 − P d,u

k−1(γ
d
k−1Āk−1)

⊤

+ γdk−1Āk−1P
d,u
k−1(γ

d
k−1Āk−1)

⊤

=(I − γdk−1Āk−1)P
d,u
k−1. (3.21)
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Similarly, applying the second constraint in Equation (3.2) to the uncon-

strained state estimate x̂uk , we formalize the state estimation problem as

follows:

x̂k = arg min
x

(x− x̂uk)
⊤W x

k (x− x̂uk)

subject to Bkx ≤ ck,

(3.22)

where we select W x
k = (P x,u

k )−1 for the smallest error covariance. We de-

note B̄k and c̄k the rows of Bk and the elements of ck corresponding to the

active constraints of Bkx ≤ ck. Using the active constraints, we reformulate

Equation (3.22) as follows:

x̂k = arg min
x

(x− x̂uk)
⊤(P x,u

k )−1(x− x̂uk)

subject to B̄kx = c̄k.

(3.23)

The solution of Equation (3.23) is given by x̂k = x̂uk − γxk (B̄kx̂uk − c̄k), where

γxk ≜ P x,u
k B̄

⊤
k (B̄kP

x,u
k B̄

⊤
k )

−1. (3.24)

Under the assumption that γxk (B̄kx̂uk − c̄k) = 0 holds, the state estimation

error covariance can be expressed as

P x
k = Γ̄kP

x,u
k Γ̄⊤

k , (3.25)

where Γ̄k ≜ I − γxk B̄k. Notice that this assumption holds when the ground

truth xk satisfies the active constraint B̄kxk = c̄k.
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3.3 Performance and Stability Analysis

We will show that the projection induced by inequality constraints improves

attack-resilient estimation accuracy and detection performance by decreas-

ing estimation errors and the false negative rate in attack detection. Notice

that the estimate d̂k−1 and the ground truth dk−1 satisfy the active con-

straint Āk−1d̂k−1− b̄k−1 = 0 in Equation (3.17) and the inequality constraint

Ak−1dk−1 ≤ bk−1 in Equation (3.2), respectively. However, it is uncertain

whether the ground truth satisfies the active constraints or not. In this case,

from Equation (3.19) we have

E[d̃k−1] = γdk−1(Āk−1dk−1 − b̄k−1) ̸= 0. (3.26)

A similar statement holds for the state estimation error:

E[x̃k] = γxk (B̄kxk − c̄k) ̸= 0. (3.27)

These considerations indicate that the projection potentially induces biased

estimates, rendering the traditional stability analysis for unbiased estimation

invalid. In this context, we will prove that estimation errors of the CARE are

practically exponentially stable in mean square.

Estimation Performance

For the analysis of the performance through the projection, we first decom-

pose the state estimation error x̃k into two orthogonal spaces as follows:

x̃k = (I − γxk B̄k)x̃k + γxk B̄kx̃k. (3.28)
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We will show that the errors in the space I−γxk B̄k remain identical after the

projection, while the errors in the space γxk B̄k reduce through the projection,

as in Lemma 3.1.

Lemma 3.1 The decomposition of x̃k in the space I − γxk B̄k is equal to that

of x̃uk, and the decomposition of x̃k in the space γxk B̄k is equal to that of x̃uk
scaled by αk, i.e.

(I − γxk B̄k)x̃k = (I − γxk B̄k)x̃uk (3.29)

γxk B̄kx̃k = αkγ
x
k B̄kx̃uk , (3.30)

where αk = diag (α1
k, · · · ,αn

k), and

αi
k ≜ (γxk B̄kx̃k)(i)((γxk B̄kx̃uk)(i))† ∈ [0, 1)

for i = 1, · · · , n. Similarly, it holds that

(I − γdkĀk)d̃k = (I − γdkĀk)d̃uk

γdkĀkd̃k = κkγ
d
kĀkd̃uk ,

where κk = diag (κ1
k, · · · ,κnk), and κik ≜ (γdkĀkd̃k)(i)((γdkĀkd̃uk)(i))† ∈ [0, 1)

for i = 1, · · · , n.

Proof: The relationship in Equation (3.29) can be obtained by applying
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B̄kx̂k = c̄k to

x̃k = xk − x̂k = xk − (x̂uk − γxk (B̄kx̂uk − c̄k))

= x̃uk + γxk (B̄kx̂uk − c̄k)

= x̃uk + γxk (B̄kx̂uk − B̄kx̂k)

= x̃uk − γxk (B̄kx̃uk − B̄kx̃k),

which implies Equation (3.29). The solution of B̄kx ≤ c̄k defines a closed

convex set Ck. The point x̂uk is not an element of the convex set. The point

x̂k has the minimum distance from x̂uk with metric d(a, b) ≜ ∥a − b∥W x
k

in

the convex set Ck by Equation (3.23). Since the solution x̂k is in the closed

set Ck, and γxk B̄k is a weighted projection with weight W x
k , the relationship

Equation (3.30) holds. The statements for attack estimation errors can be

proven by a similar procedure, which is omitted here. □

With the results from Lemma 3.1, we can show that the projection reduces

the estimation errors and the error covariances, as formulated in Theorem 3.1.

Theorem 3.1 CARE reduces the state and attack estimation errors and their

error covariances from the unconstrained algorithm, i.e., ∥x̃k∥ ≤ ∥x̃uk∥ and

∥d̃k∥ ≤ ∥d̃uk∥, P x
k ≤ P x,u

k and P d
k ≤ P d,u

k . Strict inequality holds if

rank(B̄k) ̸= 0, and rank(Āk) ̸= 0, respectively.

Proof: The statement for ∥x̃k∥ ≤ ∥x̃uk∥ is the direct result of Lemma 3.1,

where strict inequality holds if αi
k ̸= 0 for some i. The statement for ∥d̃k∥ ≤

∥d̃uk∥ can be proved by a similar procedure. To show the rest of the properties,

we first identify the equality

(I − γxk B̄k)⊤γxk B̄k = 0. (3.31)
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Since we have B̄kγxk = I by Equation (3.24), it holds that γxk B̄kγxk = γxk , and

B̄kγxk B̄k = B̄k, i.e. γxk = B̄†
k. Then, we have B̄⊤

k (γ
x
k )

⊤γxk = γxk , which implies

x̃⊤
k (I − γxk B̄k)⊤γxk B̄kx̃k = x̃⊤

k (γ
x
k B̄k − B̄⊤

k (γ
x
k )

⊤γxk B̄k)x̂k = 0. Notice that

Equation (3.31) holds for (x̃uk)
⊤(I − γxk B̄k)⊤γxk B̄kx̃uk = 0 as well. Similar to

Equation (3.21), we have P x
k = (I − γxk B̄k)P

x,u
k = P x,u

k − γxk B̄kP
x,u
k . Given

that γxk B̄kP
x,u
k = P x,u

k B̄⊤
k (B̄kP

x,u
k B̄⊤

k )
−1B̄kP x,u

k > 0 is positive definite, we

have the desired result P x
k < P x,u

k . The relation for P d
k can be obtained by

a similar procedure. □

The properties in Theorem 3.1 are desired for accurate estimation as well

as attack detection.

Detection Performance

More specifically, since the false negative rate of a χ2 attack detector (see

Appendix A) is a function of the estimate σ̂k and the covariance Σk as in

Equation (A.1), more accurate estimations can reduce the false negative rate

under the following assumption.

Assumption 3.1 In the presence of the attack (dk ̸= 0), the following two

conditions hold: (i) ∥d̃uk∥ < 1
2
∥dk∥, and (ii) the ground truth dk satisfies the

condition d⊤
k (P

d,u
k )−1dk > χ2

df (α).

Remark 3.3 Assumption 3.1 implies that the unconstrained attack estima-

tion error d̃uk is small with respect to the ground truth dk, and the normalized

ground truth attack signal is larger than χ2
df (α); otherwise, it cannot be dis-

tinguished from the noise. Notice that Assumption 3.1 is only considered for

smaller false negative rates (Theorem 3.2), but not for the estimation perfor-

mance (Theorem 3.1) and stability analysis, where we will show the stability
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of the attack estimation error d̃k (Theorem 3.4) which renders the stability

of d̃uk.

According to Equation (A.1), we denote the false negative rates of the

proposed CARE and the unconstrained algorithm as Fneg({d̂k}, {P d
k }) and

Fneg({d̂uk}, {P
d,u
k }), respectively. The following Theorem 3.2 demonstrates

that the false negative rate of CARE is less or equal to that of the unconstrained

algorithm.

Theorem 3.2 Under Assumption 3.1, given a set of attack vectors {dk},

the following inequality holds

Fneg({d̂k}, {P d
k }) ≤ Fneg({d̂uk}, {P

d,u
k }). (3.32)

Proof: The proof of Equation (3.32) is equivalent to showing that the

number of false negative test results of CARE is less or equal to that of the

unconstrained algorithm

∑
k

(1k) ≤
∑
k

(1uk). (3.33)

If there is no projection (γdk = 0), it holds that d̂k = d̂uk and P d
k = P d,u

k .

And, if there is no attack (dk = 0), it holds that 1k = 1uk = 0. Therefore, we

have

∑
k∈K0

(1k) =
∑
k∈K0

(1uk), (3.34)

where K0 ≜ {k | γdk = 0 or dk = 0}. In the rest of the proof, we consider

the case for k ∈ K ≜ {k | γdk ̸= 0 and dk ̸= 0}. Rewriting the normalized

test value from CARE by substituting P d
k with (I − γdkĀk)P

d,u
k (I − γdkĀk)⊤
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according to Equation (3.20), we have the following:

d̂⊤
k (P

d
k )

−1d̂k = d̂⊤
k

(
(I − γdkĀk)P

d,u
k (I − γdkĀk)⊤

)−1
d̂k

=
(
(I − γdkĀk)−1d̂k

)⊤
(P d,u

k )−1
(
(I − γdkĀk)−1d̂k

)
=
(
d̂uk + (I − γdkĀk)−1γdk b̄k

)⊤
(P d,u

k )−1

×
(
d̂uk + (I − γdkĀk)−1γdk b̄k

)
, (3.35)

where (I − γdkĀk)−1d̂k = d̂uk + (I − γdkĀk)−1γdk b̄k has been applied. Now we

expand and rearrange Equation (3.35), resulting in the following:

d̂⊤
k (P

d
k )

−1d̂k = (d̂uk)
⊤(P d,u

k )−1d̂uk

+
(
(I − γdkĀk)−1γdk b̄k

)⊤
(P d,u

k )−1
(
(I − γdkĀk)−1γdk b̄k

)
+2(d̂uk)

⊤(P d,u
k )−1((I − γdkĀk)−1γdk b̄k)

=(d̂uk)
⊤(P d,u

k )−1d̂uk

+
(
γdk b̄k

)⊤(
(I − γdkĀk)P

d,u
k (I − γdkĀk)⊤

)−1
γdk b̄k

+2(d̂uk)
⊤((I − γdkĀk)P

d,u
k

)−1
γdk b̄k. (3.36)

Applying Equation (3.20) and Equation (3.21) to Equation (3.36), we have

d̂⊤
k (P

d
k )

−1d̂k = (d̂uk)
⊤(P d,u

k )−1d̂uk

+
(
γdk b̄k

)⊤
(P d

k )
−1γdk b̄k + 2(d̂uk)

⊤(P d
k )

−1γdk b̄k︸ ︷︷ ︸
≜ residue (res.)

. (3.37)

Since d̂k satisfies the input active constraint, we can substitute b̄k with Ākd̂k.
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Then the residue defined in Equation (3.37) can be written as follows:

res. =
(
γdkĀkd̂k

)⊤
(P d

k )
−1γdkĀkd̂k

+ 2(d̂uk)
⊤(P d

k )
−1γdkĀkd̂k. (3.38)

Expanding and rearranging Equation (3.38), we have the following:

res. = 2d⊤
k P

′
kdk − 2d̃⊤

k P
′
kdk − 2(d̃uk)

⊤P ′
kdk (3.39)

+ 2d̃⊤
k P

′
kd̃k + ∥γdkĀk∥2d̃⊤

k (P
d
k )

−1d̃k (3.40)

+ ∥γdkĀk∥2d⊤
k (P

d
k )

−1dk − 2∥γdkĀk∥2d⊤
k (P

d
k )

−1d̃k, (3.41)

where P ′
k ≜ (γdkĀk)⊤(P d

k )
−1 > 0. Using the result ∥d̃k∥ < ∥d̃uk∥ from Theo-

rem 3.1 and the first inequality in Assumption 3.1, we obtain ∥d̃∥ < ∥d̃u∥ <
1
2
∥d∥. Then we have res. > 0, since expressions in Equation (3.39) to Equa-

tion (3.41) are positive, respectively. Therefore, from Equation (3.37), we

have

(d̂uk)
⊤(P d,u

k )−1d̂uk < d̂⊤
k (P

d
k )

−1d̂k. (3.42)

Considering the condition in Equation (3.42), we can divide the set K =

∪3i=1Ki into three partitions as follows:

K1 ≜
{
k | (d̂uk)⊤(P

d,u
k )−1d̂uk < d̂⊤

k (P
d
k )

−1d̂k ≤ χ2
df (α)

}
K2 ≜

{
k | χ2

df (α) < (d̂uk)
⊤(P d,u

k )−1d̂uk < d̂⊤
k (P

d
k )

−1d̂k
}

K3 ≜
{
k | (d̂uk)⊤(P

d,u
k )−1d̂uk ≤ χ2

df (α) < d̂⊤
k (P

d
k )

−1d̂k
}
.
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According to Equation (A.2), we have

∑
k∈Ki

(1k) =
∑
k∈Ki

(1uk) for i = 1, 2 and (3.43)

∑
k∈K3

(1k) <
∑
k∈K3

(1uk). (3.44)

Therefore, from Equation (3.34), Equation (3.43) and Equation (3.44) we

conclude that Equation (3.33) holds, which completes the proof. □

Stability Analysis

Although the projection reduces the estimation errors and their error co-

variances as shown in Theorem 3.1, it trades the unbiased estimation off

according to Equation (3.26) and Equation (3.27). In the absence of the pro-

jection, Algorithm 2 reduces to the algorithm in [61], which is an unbiased

estimation, while the traditional stability analysis for unbiased estimation

becomes invalid after the projection is applied.

To prove the recursive stability of the biased estimation, it is essential

to construct a recursive relation between the current estimation error x̃k

and the previous estimation error x̃k−1. However, the construction is not

straightforward compared to that in filtering with equality constraints [25, 31]

or filtering without constraints [65, 61]. Especially, it is difficult to find the

exact recursive relation between x̃k and x̃uk , since x̃k is also a function of x̂uk ,

i.e. x̃k = x̃uk − γxk (B̄kx̂uk − c̄k). Then, we have x̃k ̸= (I − γxk B̄k)x̃uk , since

the inequality B̄kxk ≤ c̄k holds. To address this issue, we decompose the

estimation error x̃k into two orthogonal spaces as in Equation (3.28). By

Lemma 3.1, Equation (3.28) becomes x̃k = Γkx̃
u
k , where Γk ≜ (I − γxk B̄k) +

αkγ
x
k B̄k. Note that αk is an unknown matrix and thus cannot be used for the
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algorithm. We use it only for analytical purposes. Now under the following

assumptions, we present the stability analysis of the proposed Algorithm 2.

Assumption 3.2 We have rank(Bk) < n ∀k. There exist ā, c̄y, ḡ, m̄,
¯
q,

¯
β,

β̄ > 0, such that the following holds for all k ≥ 0:

∥Ak∥ ≤ ā, ∥Ck∥ ≤ c̄y, ∥Gk∥ ≤ ḡ,

∥Mk∥ ≤ m̄, Qk ≥
¯
qI.

Remark 3.4 In Assumption 3.2, it is assumed that rank(Bk) < n ∀k, i.e.,

the number of the state constraints are less than the number of state variables.

The rest of Assumption 3.2 is widely used in the literature on extended Kalman

filtering [66] and nonlinear input and state estimation [62].

To show the boundedness of the unconstrained state error covariance

P x,u
k , we first define the matrices Āk−1 ≜ (I−Gk−1MkCk)Ak−1 and Ãk−1 ≜

(I −Gk−1Mk(CkGk−1Mk)
−1Ck)Āk−1Γ̄k−1.

Theorem 3.3 Let the pair (Ck, Ãk−1) be uniformly detectable2, then the

unconstrained state error covariance P x,u
k is bounded, i.e., there exist non-

negative constants
¯
p and p̄ such that

¯
pI ≤ P x,u

k ≤ p̄I for all k.

Proof:

The unconstrained state estimation error can be found by

x̃uk =(I −LkCk)Āk−1x̃k−1

+ (I −LkCk)w̄k−1 + L̄kvk, (3.45)

where w̄k−1 ≜ (I − Gk−1MkCk)wk−1, and L̄k ≜ LkCkGk−1Mk − Lk −
2Please refer to [65] for the definition of uniform detectability.
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Gk−1Mk. Therefore, the update law of unconstrained covariance is calcu-

lated from Equation (3.45) and Equation (3.25) as follows:

P x,u
k =(I −LkCk)Āk−1Γ̄k−1P

x,u
k−1Γ̄

⊤
k−1

× Ā⊤
k−1(I −LkCk)

⊤ + L̄kRkL̄
⊤
k

+ (I −LkCk)Q̄k−1(I −LkCk)
⊤, (3.46)

where Q̄k−1 ≜ E[w̄k−1(w̄k−1)
⊤]. The covariance update law Equation (3.46)

is identical to the covariance update law of the Kalman filtering solution of

the transformed system

xk = Āk−1Γ̄k−1xk−1 + ŵk−1

yk = Ckxk + vk,

(3.47)

where ŵk−1 ≜ −Gk−1MkCkwk−1 − Gk−1Mkvk + wk−1. However, in the

transformed system, the process noise and measurement noise are correlated,

i.e., E[ŵk−1v
⊤
k ] = −Gk−1MkRk ̸= 0. To decouple the noises, we add a

zero term Zk(yk − Ck(Āk−1Γ̄k−1xk + ŵk−1) − vk) to the state equation in

Equation (3.47), and obtain the following:

xk = Ãk−1xk−1 + ũk−1 + w̃k−1,

where Ãk−1 = (I − ZkCk)Āk−1Γ̄k−1, ũk−1 ≜ Zkyk is the known input,

and w̃k−1 ≜ (I − ZkCk)ŵk−1 − Zkvk is the new process noise. The new

process noise and the measurement noise could be decoupled by choosing

the gain Zk such that E[w̃k−1v
⊤
k ] = 0. The solution can be found by Zk =
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Gk−1Mk(CkGk−1Mk)
−1. Then, the system Equation (3.47) becomes

xk = Ãk−1xk−1 + ũk−1 + w̃k−1

yk = Ckxk + vk.

Since the pair (Ck, Ãk−1) is uniformly detectable, by Theorem 5.2 in [65],

the statement holds. □

Theorem 3.3 shows that the uniform detectability of the transformed

system is one of the sufficient conditions of boundedness of P x,u
k . Under

the assumption of boundedness of P x,u
k from Theorem 3.3, we show that the

constrained estimation errors x̃k and d̃k are practically exponentially stable

in mean square as in Theorem 3.4.

Theorem 3.4 Consider Assumption 3.2 and assume that there exist non-

negative constants
¯
p and p̄ such that

¯
pI ≤ P x,u

k ≤ p̄I holds for all k. Then

the estimation errors x̃k and d̃k are practically exponentially stable in mean

square, i.e., there exist constants ax, ad, bx, bd, cx, cd such that for all k

E[∥x̃k∥2] ≤ axe
−bxkE[∥x̃0∥2] + cx

E[∥d̃k∥2] ≤ ade
−bdkE[∥d̃0∥2] + cd.

Proof:

Consider the Lyapunov function Vk = (x̃uk)
⊤(P x,u

k )−1(x̃uk). After substi-
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tuting Equation (3.45) into the Lyapunov function, we obtain

Vk =(x̃uk−1)
⊤Γ⊤

k−1Ā
⊤
k−1(I −LkCk)

⊤(P x,u
k )−1

× (I −LkCk)Āk−1Γk−1x̃
u
k−1

+ 2(x̃uk−1)
⊤Γ⊤

k−1Ā
⊤
k−1(I −LkCk)

⊤

× (P x,u
k )−1(I −LkCk)w̄k−1

+ 2(x̃uk−1)
⊤Γ⊤

k−1Ā
⊤
k−1(I −LkCk)

⊤(P x,u
k )−1L̄kvk

+ w̄⊤
k−1(I −LkCk)

⊤(P x,u
k )−1(I −LkCk)w̄k−1

+ 2w⊤
k−1(I −LkCk)

⊤(P x,u
k )−1L̄kvk

+ v⊤
k L̄k(P

x,u
k )−1L̄kvk. (3.48)

By the uncorrelatedness property [67] of wk−1, vk and x̃uk−1, the Lyapunov

function Equation (3.48) becomes

E[Vk] = E[(x̃uk−1)
⊤Γ⊤

k−1Ā
⊤
k−1(I −LkCk)

⊤(P x,u
k )−1

× Āk−1(I −LkCk)Γk−1(x̃
u
k−1)]

+ E[w̄⊤
k−1(I −LkCk)

⊤(P x,u
k )−1(I −LkCk)w̄k−1]

+ E[v⊤
k L̄k(P

x,u
k )−1L̄kvk]. (3.49)

The following statements are formulated to deal with each term in Equa-

tion (3.49).

Claim 3.1 There exists a constant δ ≜ ( ¯
q′

ā′2p̄
+ 1)−1 ∈ (0, 1), such that

Γ⊤
k−1Ā

⊤
k−1(I −LkCk)

⊤(P x,u
k )−1(I −LkCk)Āk−1Γk−1 < δ(P x,u

k−1)
−1.

Proof: Since rank(Bk) < n ∀k, it holds that rank(B̄k) < n ∀k and thus

Γ̄ ̸= 0. Therefore, ∥Γ̄k−1∥ = 1 because γxk−1B̄k−1 is a projection matrix. From

Assumption 3.2 and Theorem 3.3, we have Q̄k−1 ≥
¯
q′I, and P x

k−1 ≤ p̄I. Since
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∥Āk−1∥ is upper bounded by ā′ ≜ ā(1+ ḡm̄c̄y), we can have Āk−1Ā
⊤
k−1 ≤ ā′2I.

Then we have

Q̄k−1 ≥
¯
q′
Āk−1Ā

⊤
k−1

ā′2
≥ ¯

q′

ā′2
Āk−1Γ̄k−1Γ̄

⊤
k−1Ā

⊤
k−1

≥ ¯
q′

ā′2p̄
Āk−1Γ̄k−1P

x,u
k−1Γ̄

⊤
k−1Ā

⊤
k−1. (3.50)

Substitution of Equation (3.50) into Equation (3.46) yields

P x,u
k − (1 + ¯

q′

ā′2p̄
)(I −LkCk)Āk−1Γ̄k−1P

x,u
k−1Γ̄

⊤
k−1Ā

⊤
k−1

× (I −LkCk)
⊤ > 0, (3.51)

where the inequality holds because Rk > 0. As (1+ ¯
q′

ā′2p̄
)P x,u

k−1 > 0, the inverse

of the left hand side of Equation (3.51) exists and is symmetric positive

definite. By the matrix inversion lemma [68], it follows that

(1 + ¯
q′

ā′2p̄
)−1(P x,u

k−1)
−1 − Γ̄⊤

k−1Ā
⊤
k−1(I −LkCk)

⊤

× (P x,u
k )−1(I −LkCk)Āk−1Γ̄k−1 > 0. (3.52)

Since γxk−1B̄k−1 is a positive definite matrix, and ∥αk−1∥ ≤ 1, we have

I − γxk−1B̄k−1 ≤ Γk−1

= I − γxk−1B̄k−1 +αk−1γ
x
k−1B̄k−1 ≤ I,

which implies ∥Γk−1∥ ≤ 1. Since ∥Γ̄k−1∥ = 1 and ∥Γk−1∥ ≤ 1, inequality

Equation (3.52) proves the claim. □

Claim 3.2 There exists a positive constant c ≜ p̄(1+l̄c̄y)
2(1+ḡm̄c̄2)

2q̄ rank(Qk−1)+
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p̄(l̄c̄yḡm̄− l̄ − ḡm̄)2r̄2 rank(Rk), such that

E[∥(I −LkCk)
⊤(P x,u

k )−1(I −LkCk)∥∥w̄k−1∥2]

+E[∥L̄k(P
x,u
k )−1L̄k∥∥vk]∥2] ≤ c.

Proof: The first term is bounded by

E[∥(I −LkCk)
⊤(P x,u

k )−1(I −LkCk)∥∥w̄k−1∥2]

=E[∥(I −LkCk)
⊤(P x,u

k )−1(I −LkCk)∥

∥(I −Gk−1MkCk)∥2∥wk−1∥2]

≤ p̄(1 + l̄c̄y)
2(1 + ḡm̄c̄2)

2q̄ rank(Qk−1),

where we apply ∥wk−1∥2 = tr(wk−1w
⊤
k−1) ≤ q̄ rank(Qk−1). Likewise, the

second term is bounded by

E[∥L̄k(P
x,u
k )−1L̄k∥∥vk]∥2]

≤ p̄(l̄c̄yḡm̄+ l̄ + ḡm̄)2r̄2 rank(Rk).

These complete the proof. □

Through Claims 3.1 and 3.2, Equation (3.49) becomes

E[Vk] ≤ δE[Vk−1] + c.
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By recursively applying the above relation, we have

E[Vk] ≤ δkE[V0] +
k−1∑
i=0

δic ≤ δkE[V0] +
∞∑
i=0

δic

= δkE[V0] +
c

1− δ
,

which implies practical exponential stability of the estimation error

E[∥x̃uk∥2] ≤
p̄

¯
p
δkE[∥x̃u0∥2] +

cp̄

(1− δ)

= a′xe
−b′xkE[∥x̃u0∥2] + c′x,

where (x̃uk)⊤(P x
k )

−1(x̃uk) ≥ λmin((P
x
k )

−1)∥x̃uk∥2 ≥ 1
p̄
∥x̃uk∥2 and (x̃u0)

⊤(P x
0 )

−1x̃u0 ≤

λmax((P
x
0 )

−1)∥x̃u0∥2 ≤ 1

¯
p
∥x̃u0∥2 have been applied. Constants are defined by

a′x ≜
p̄

¯
p
, b′x ≜ ln(1 + ¯

q′

h̄2ā′2p̄
) c′x ≜

cp̄

(1− δ)
.

Since x̃k is a linear transformation of x̃uk , the same stability holds for x̃k.

Likewise, the same stability holds for d̃k in Equation (3.19) because it is a

linear transformation of x̃k. We omit its details. □

3.4 Illustrative Example

In this example, we test Algorithm 2 on a vehicle model with input and

state constraints and compare the estimation accuracy and the detection

performance with an unconstrained algorithm.

68



Table 3.1: Performance comparison.∑
k ∥x̃k∥

∑
k ∥d̃k∥

∑
k ∥ tr(P x

k )∥
∑

k ∥ tr(P d
k )∥

CARE 88.928 672.914 0.455 27.351∗

ISE 123.623 1041.837 0.613 40.577∗

∗ The summation ranges from k = 100 to k = 1000 due to the large initialization (104-
scale), as shown in Figure 3.4.

Figure 3.2: Kinematic Bicycle Model.

Experimental Setup

We consider a kinematic bicycle model (Figure 3.2) in [69]. The nonlinear

continuous-time model is given as

ẋ = v cos(ψ + β)

ẏ = v sin(ψ + β)

ψ̇ =
v

lr
sin(β)

v̇ = a

β = arctan
( lr
lf + lr

tan(δ)
)
,

69



where x and y are the coordinates of the center of mass, v is the velocity

of the center of mass, β is the angle of the velocity v with respect to the

longitudinal axis of the vehicle, a is the acceleration, ψ is the heading angle

of the vehicle, δ is the steering angle of the front wheel, and lf and lr represent

the distance from the center of mass of the vehicle to the front and rear axles,

respectively.

Since the proposed algorithm is for linear discrete-time systems, we per-

form the linearization and discretization as in [70] with sampling time Ts =

0.01s. We rewrite the system in the form of Equation (3.1), where xk =

[xk, yk, ψk, vk]
⊤ is the state vector, uk = [βuk , a

u
k ]

⊤ =
[

arctan
(

lr
lf+lr

tan(δuk )
)
, auk

]⊤
is the input vector, and dk = [βdk , a

d
k]

⊤ =
[

arctan
(

lr
lf+lr

tan(δdk)
)
, adk

]⊤
is the

attack input vector. We consider the scenario that attack input is injected

into the input, i.e. Gk = Bk. The system matrices are given as follows:

Ak =



1 0 0 Ts

0 1 vkTs 0

0 0 1 0

0 0 0 1


, Bk = Gk =



0 0

vkTs 0

vkTs
lr

0

0 Ts


,

and Ck = I. The noise covariances Qk and Rk are considered as di-

agonal matrices with diag(Qk) = [0.1, 0.1, 0.001, 0.0001] and diag(Rk) =

[0.01, 0.01, 0.001, 0.00001].

The vehicle is assumed to have state constraints on the location 0 ≤ xk ≤

20, 0 ≤ yk ≤ 5 and the velocity 0 ≤ vk ≤ 22, and input constraints on the

steering angle |δ| ≤ 1.0472 and the acceleration |a| ≤ 3.5.
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The unknown attack signals are

δdk =


0, 0 ≤ k < 100

1.1 sin(0.05k), 0 ≤ k < 100

adk =


0 0 ≤ k < 100

3.5, 100n ≤ k < 100(n+ 1)

−3.5, 100(n+ 1) ≤ k < 100(n+ 2)

,

where n = 1, 2, · · · , 5.

The constraints on the vehicle can be formulated by inequality constraints

as in Equation (3.2):



1 0

−1 0

0 1

0 −1


︸ ︷︷ ︸

Ak−1

δdk−1

adk−1

 ≤


1.0472− δuk−1

1.0472 + δuk−1

3.5− auk−1

3.5 + auk−1


︸ ︷︷ ︸

bk−1

1 0 0 0

−1 0 0 0

0 1 0 0

0 −1 0 0

0 0 0 1

0 0 0 −1


︸ ︷︷ ︸

Bk



xk

yk

ψk

vk


≤



20

0

5

0

22

0


︸ ︷︷ ︸

ck

.

To reduce the effect of instantaneous noises, the cumulative sum algorithm

(CUSUM) is adopted [71]. The χ2 test is utilized in a cumulative form. The
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χ2 CUSUM detector is characterized by the detector state Sk ∈ R+:

Sk = ϕSk−1 + d̂⊤
k P

−1
k d̂k, S0 = 0, (3.53)

where 0 < ϕ < 1 is the pre-determined forgetting rate. At each time k, the

CUSUM detector Equation (3.53) is used to update the detector state Sk and

detect the attack. In particular, we conclude that the attack is presented if

Sk >
∞∑
i=0

ϕiχ2
df (α) =

χ2
df (α)

1− ϕ
. (3.54)

All values are in standard SI units: m (meter) for lf , lr, xk, and yk; rad for

δuk , δdk, βuk , βdk , and ψk; m/s for vk; m/s2 for auk and adk.
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0.0
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||
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−
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tr
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x

)
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Figure 3.3: Estimation errors of constrained states and traces of the state
error covariance.

Results

We show a comparison of the proposed algorithm (CARE) and the unified

linear input and state estimator (ISE) introduced in [61]. Figure 3.3 shows

the estimation errors of the constrained states (xk and yk) and the traces of
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the state error covariances, and Figure 3.4 shows the unknown attack signals

and their estimates and traces of the attack estimation error covariances. As

expected, CARE produces smaller state estimation error and lower covariance.

When the attack happens after k = 100, the estimates obtained by CARE are

closer to the true values and have lower error covariances (cf. Table 3.1). The

200 400 600 800 1000
time [k]

0

5
δ
d

Esti.(ISE) Esti.(CARE) True

200 400 600 800 1000
time [k]

0

20

a
d Esti.(ISE) Esti.(CARE) True

0 200 400 600 800 1000
time [k]

0

1

tr
(P

d
)

×104

ISE

CARE0

5

Figure 3.4: Attack signal estimation and traces of error covariance of the
attack signals.
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1−φ
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0
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Figure 3.5: Attack detection.

estimates are used to calculate the detector state Sk in Equation (3.53). The

statistical significance of the attack is tested using the CUSUM detector. The
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threshold is calculated by χ2
df/(1−ϕ) in Equation (3.54) with the significance

level α = 0.01 and the forgetting rate ϕ = 0.15. The detector states and the

threshold are plotted in log−scale (Figure 3.5). When the attack is present,

CARE can detect the attack by producing high detector state values above the

threshold, while the detector state values from ISE are oscillating around the

threshold, suffering from a high false negative rate of 66.44%.
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Algorithm 2 Constrained Attack-Resilient Estimation (CARE):
▷ Prediction

1: x̂−
k = Ak−1x̂k−1 +Bk−1uk−1;

2: P x,−
k = Ak−1P

x
k−1A

⊤
k−1 +Qk−1;

▷ Attack estimation
3: R̃k = (CkP

x,−
k C⊤

k +Rk)
−1;

4: Mk = (G⊤
k−1C

⊤
k R̃kCkGk−1)

−1G⊤
k−1C

⊤
k R̃k;

5: d̂uk−1 = Mk(yk −Ckx̂
−
k );

6: P d,u
k−1 = (G⊤

k−1C
⊤
k R̃kCkGk−1)

−1;
7: P xd

k−1 = −P x
k−1A

⊤
k−1C

⊤
k M

⊤
k ;

▷ Time update
8: x̂⋆k = x̂−

k +Gk−1d̂
u
k−1;

9: P x⋆
k = Ak−1P

x
k−1A

⊤
k−1 +Ak−1P

xd
k−1G

⊤
k−1

+Gk−1(P
xd
k−1)

⊤A⊤
k−1 +Gk−1P

d,u
k−1G

⊤
k−1

−Gk−1MkCkQk−1 −Qk−1C
⊤
k M

⊤
k G⊤

k−1

+Qk−1;
10: R̃⋆

k = CkP
x⋆
k C⊤

k −CkGk−1MkRk −RkM
⊤
k G⊤

k−1C
⊤
k

+Rk;
▷ Measurement update

11: Lk = (P x⋆
k C⊤

k −Gk−1MkRk)R̃
⋆†
k ;

12: x̂uk = x̂⋆k +Lk(yk −Ckx̂
⋆
k);

13: P x,u
k = (I −LkCk)Gk−1MkRkL

⊤
k

+LkRkM
⊤
k G⊤

k−1(I −LkCk)
⊤

+(I −LkCk)P
x⋆
k (I −LkCk)

⊤ +LkRkL
⊤
k ;

▷ Projection update
14: γdk−1 = P d,u

k−1Ā
⊤
k−1(Āk−1P

d,u
k−1Ā

⊤
k−1)

−1;
15: d̂k−1 = d̂uk−1 − γdk−1(Āk−1d̂

u
k−1 − b̄k−1);

16: P d
k−1 = (I − γdk−1Āk−1)P

d,u
k−1(I − γdk−1Āk−1)

⊤;
17: γxk = P x,u

k B̄
⊤
k (B̄kP

x,u
k B̄

⊤
k )

−1;
18: x̂k = x̂uk − γxk (B̄kx̂uk − c̄k);
19: P x

k = (I − γxk B̄k)P
x,u
k (I − γxk B̄k)⊤;
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Chapter 4

Fixed Rank Resilient Filtering

Spatio-temporal modeling and filtering have been widely used in environ-

mental process estimation [72]. These methodologies’ main idea is to model

spatial and temporal random effects in dynamic systems and recursively es-

timate the target variable. Since these methodologies consider both spatial

and temporal correlation for a large-scale system, they provide a smooth geo-

statistical mapping. Recent research focuses on reducing the computational

complexity for potentially massive datasets [73, 74, 75]. In particular, the

spatio-temporal fixed rank filter in [74] improves the computational efficiency

using spatio-temporal models defined on a fixed dimensional space. However,

getting an exact model of the fixed dimensional space is difficult. The chap-

ter proposes to extend the spatio-temporal fixed rank filter [74] to a fixed

rank resilient filter (FRRF) such that the filter captures model uncertainty

and unmodeled biased noises.

4.1 Problem Formulation

Consider a spatio-temporal process

{qs,k : s ∈ D, k ∈ {1, 2, · · · , nD}},
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where qs,k ∈ Rnq , and D is the index set of spatial domains (or area), and

k is the discrete-time index. Domain D could be finite or countably infinite.

Now consider the spatio-temporal mixed effect model [74, 75]:

qs,k = µs,k + Ss,kηk + ξs,k (4.1a)

zk = [zs1k ,k, zs2k ,k, · · · , zsnk
,k]

⊤ (4.1b)

zs,k = qs,k + ϵs,k, (4.1c)

where zs,k ∈ Rnq is the output of area s at time k and is subject to

measurement noise ϵs,k. At the time k, we observe nk sensor outputs, and

the collection of outputs is denoted by zk ∈ Rnknq . The collection of measured

area indices is denoted by Ok = {s1k , s2k , · · · , snk
} ⊆ D.

The first term µs,k ∈ Rnq in Equation (4.1a) is a known time-varying

value that models large-scale variation and is sometimes called a mean of

qs,k in literature.

The second term Ss,kηk captures a smooth small-scale variation that

correlates the spatial relationship between different areas by the finite nη-

dimensional spatial basis Ss,k. Matrix Ss,k is known, but the state variable

ηk ∈ Rnη is unknown. The third term ξs,k ∈ Rnq presents time-dependent

fine-scale variation that captures the nugget effect. The state variable ηk is

supposed to evolve according to the following dynamic equation:

ηk+1 = Hkηk +Gkdk + ζk, (4.2)

where Hk and Gk are known matrices. The first term Hkηk captures tem-

poral correlation, and the row of Hk can be chosen to be zeros if the cor-

responding component ηk+1 does not change dynamically. The second term
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Gkdk denotes a biased noise and model uncertainty, where dk ∈ Rnd is un-

known. This term is absent in [74, 75]. The last term ζk ∈ Rnη represents a

fine-scale variation of hidden state ηk. All noises ϵs,k, ξs,k, ζk are independent

zero-mean Gaussian with covariance P ϵ
s,k, P

ξ
s,k, and P ζ

k , respectively.

The chapter extends the fixed rank filtering to FRRF, incorporating bi-

ased noise and model uncertainty dk, described in Equation (4.2). Our in-

terest is to recursively estimate the hidden state qs∗,k for the query area

s∗ ∈ D.

4.2 Algorithm Design

Denote µk, Sk, ϵk, ξk the collection of the corresponding values for all s ∈ Ok

and define P ϵ
k = diag(P ϵ

s,k) and P ξ
k = diag(P ξ

s,k) for all s ∈ Ok for simplicity.

The matrix Ek ∈ {0, 1}(nk×nD)nq denotes the output matrix having I ∈

Rnq×nq for (1, s1k), · · · , (nk, snk
) blocks, and 0 for the others. Chapters 4.2

and 4.3 present detailed derivation and properties of FRRF. The derivation

of the algorithm is motivated by fixed rank filtering [74] and simultaneous

unknown input and state estimation algorithms [76, 77, 78], and, thus, they

also share similar properties. In particular, the proposed algorithm is the

best linear unbiased estimation (Lemma 4.1), and the expected estimation

error is practically exponentially stable when measurements for each area are

obtained as a Poisson process (Theorem 4.1).

Algorithm Summary

Given the output zs,k and the previous estimate η̂k−1, the unknown variable

ηk in Equation (4.2) is estimated by rejecting the unmodeled uncertainty

dk. The variable qs,k in Equation (4.1) is estimated from η̂k compensating
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for fine-scale variation ξs,k by its estimate ξ̂s,k. The proposed algorithm is

summarized as follows.

• Recursive prediction:

η̂k|k−1 = Hk−1η̂k−1 +Gk−1Mk(zk − µk − SkHk−1η̂k−1)

P η
k|k−1 = (I −Gk−1MkSk)Hk−1P

η
k−1H

⊤
k−1(I −Gk−1MkSk)

⊤

+Gk−1Mk(P
ϵ
k +EkP

ξ
kE

⊤
k )M

⊤
k G

⊤
k−1

+ (I −Gk−1MkSk)P
ζ
k−1(I −Gk−1MkSk)

⊤, (4.3)

where

Mk = (G⊤
k−1S

⊤
k R

−1
k SkGk−1)

†G⊤
k−1S

⊤
k R

−1
k , (4.4)

and Rk = Sk(Hk−1P
η
k−1H

⊤
k−1 + P ζ

k−1)S
⊤
k + P ϵ

k +EkP
ξ
kE

⊤
k .

• Recursive estimation:

η̂k = η̂k|k−1 +Kk(zk − µk − Skη̂k|k−1)

P η
k = (I −KkSk)P

η
k|k−1(I −KkSk)

⊤ +Kk(P
ϵ
k +EkP

ξ
kE

⊤
k )K

⊤
k

+ (I −KkSk)Mk(P
ϵ
k +EkP

ξ
kE

⊤
k )K

⊤
k

+Kk(P
ϵ
k +EkP

ξ
kE

⊤
k )M

⊤
k (I −KkSk)

⊤, (4.5)

where

Kk = (P η
k|k−1S

⊤
k −Mk(P

ϵ
k +EkP

ξ
kE

⊤
k ))R̃

−1
k , (4.6)

and R̃k = SkP
η
k|k−1S

⊤
k + (P ϵ

k +EkP
ξ
kE

⊤
k )− SkMk(P

ϵ
k +EkP

ξ
kE

⊤
k )−

(P ϵ
k +EkP

ξ
kE

⊤
k )M

⊤
k S

⊤
k .
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• Estimation of qs∗,k:

q̂s∗,k = µs∗,k + Ss∗,kη̂k + ξ̂s∗,k

ξ̂s∗,k = Ls∗,k(z
s∗
k − Īµs∗,k − ĪSs∗,kη̂k|k−1)

and if s∗ ∈ Ok, we have

P q
s∗,k

= Ss∗,kKkSkP
η
k|k−1(Ss∗,kKkSk)

⊤ +Ls∗,kP
ϵ
s∗,kL

⊤
s∗,k

+ Ss∗,kKk(P
ϵ
k +EkP

ξ
kE

⊤
k )(Ss∗,kKk)

⊤ +Ls∗,kP
s∗,s,ϵ
k K⊤

k S
⊤
s∗,k

+ Ss∗,kKkSkGk−1Mk((P
ϵ
k +EkP

ξ
kE

⊤
k )K

⊤
k S

⊤
s∗,k + P s,s∗,ϵ

k L⊤
s∗,k)

+ (Ss∗,kKk(P
ϵ
k +EkP

ξ
kE

⊤
k ) + Ss∗,kKkP

s,s∗,ϵ
k L⊤

s∗,k

+Ls∗,kP
s∗,s,ϵ
k )(Ss∗,kKkSkGk−1Mk)

⊤; (4.7a)

otherwise,

P q
s∗,k

= Ss∗,kP
η
k S

⊤
s∗,k + P ξ

s∗,k
, (4.7b)

where zs∗k is the collection of outputs zs,k for s = s∗,

Ls∗,k =

 (Ī⊤R̄−1
s∗,k

Ī)−1Ī⊤R̄−1
s∗,k

if s∗ ∈ Ok

0 otherwise,
(4.8)

and R̄s∗,k = P ϵ
s∗,k

I + ĪSs∗,kP
η
k|k−1S

⊤
s∗,k

Ī⊤ − ĪSs∗,kGk−1MkP
s,s∗,ϵ
k −

P s∗,s,ϵ
k (ĪSs∗,kGk−1Mk)

⊤, Ī = [I, · · · , I]⊤, P s,s∗,ϵ
k ≜ E[ϵk(ϵs∗k )⊤].

FRRF Derivation

Prediction of ηk. The previous estimate η̂k−1 and its covariance P η
k−1 are

given in the last iteration. Assuming that the estimate η̂k−1 is unbiased, the
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uncertainty dk−1 can be estimated from the prediction error:

d̂k−1 = Mk(zk − µk − SkHk−1η̂k−1)

= Mk(ϵk +Ekξk + Sk(ζk−1 +Gk−1dk−1 +Hk−1η̃k−1)), (4.9)

where the error is a function of MkSkGk−1dk−1. To provide an unbiased

estimate, we will choose Mk later such that MkSkGk−1 = I. The error

dynamics of the uncertainty estimate are

d̃k−1 = −Mk(ϵk +Ekξk + Sk(ζk−1 +Hk−1η̃k−1)). (4.10)

Given d̂k−1, the current state ηk can be predicted by the dynamical system

in Equation (4.2):

η̂k|k−1 = Hk−1η̂k−1 +Gk−1d̂k−1.

The estimation error η̃k|k−1 = ηk − η̂k|k−1 becomes

η̃k|k−1 = Hk−1η̃k−1 +Gk−1d̃k−1 + ζk−1

= (I −Gk−1MkSk)Hk−1η̃k−1 −Gk−1Mk(ϵk +Ekξk)

+ (I −Gk−1MkSk)ζk−1,

where the relation in Equation (4.10) is applied. These error dynamics induce

the covariance update for P η
k|k−1 in Equation (4.3).
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Estimation of ηk. Given η̂k|k−1, the prediction is corrected by the predic-

tion error zk − µk − Skη̂k|k−1:

η̂k = η̂k|k−1 +Kk(zk − µk − Skη̂k|k−1).

The estimation error becomes

η̃k = (I −KkSk)η̃k|k−1 −Kk(ϵk +Ekξk), (4.11)

which results in the covariance P η
k in Equation (4.5).

Estimation of qs∗,k Our interest is to estimate the hidden state qs∗,k for the

query area s∗, which can be estimated by the process model in Equation (4.1)

as follows:

q̂s∗,k = µs∗,k + Ss∗,kη̂k + ξ̂s∗,k,

where

ξ̂s∗,k =

 Ls∗,k(z
s∗
k − Īµs∗,k − ĪSs∗,kη̂k|k−1) if s∗ ∈ Ok

0 otherwise

and Ī = [I, · · · , I]⊤. Since ξs∗,k is associated with the area s∗, the measure-

ment zs,k is not a function of ξs∗,k if s ̸= s∗. Therefore, the estimate ξ̂s∗,k is

available only when s∗ ∈ Ok. Since

ξ̂s∗,k = Ls∗,k(ĪSs∗,kη̃k|k−1 + ϵs∗k + Īξs∗,k),
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we need to choose the gain Ls∗,k such that Ls∗,kĪ = I for an unbiased

estimate. Then, the estimation error becomes

ξ̃s∗,k = Ls∗,k(ĪSs∗,kη̃k|k−1 + ϵs∗k ). (4.12)

The estimation error for qs∗,k is given by

q̃s∗,k = Ss∗,kη̃k + ξ̃s∗,k

= −Ss∗,kKkSkη̃k|k−1 − Ss∗,kKk(ϵk +Ekξk)−Ls∗,kϵ
s∗
k , (4.13)

where the relations Ls∗,kĪ = I and Equation (4.11) are applied. If s∗ /∈ Ok,

then we have

q̃s∗,k = Ss∗,kη̃k + ξs∗,k.

Considering the cross relations between the error terms, we can find the

covariance P q
s∗,k

in Equation (4.7).

4.3 Properties of the FRRF

Lemma 4.1 Assume η̂0 is an unbiased estimate. The estimates η̂k, d̂k−1

and q̂k are the best linear unbiased estimates (BLUE), if the gains Mk, Kk,

and Ls∗,k are chosen by Equations (4.4), (4.6) and (4.8), respectively.

Proof: Assume η̂k−1 is unbiased. The prediction error is given by

zk − µk − SkHk−1η̂k−1 = Skdk−1 + (ϵk +Ekξk + Sk(ζk−1 +Hk−1η̃k−1)).
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By normalizing the above equation with R
− 1

2
k , we have

R
− 1

2
k (zk − µk − SkHk−1η̂k−1)

= R
− 1

2
k Skdk−1+R

− 1
2

k (ϵk +Ekξk + Sk(ζk−1 +Hk−1η̃k−1)),

where the variance of the last term is normalized, i.e., V ar(R− 1
2

k (ϵk+Ekξk+

Sk(ζk−1+Hk−1η̃k−1))) = I. Now, by the Gauss Markov theorem, we can get

Mk in Equation (4.4). Therefore, d̂k−1 in Equation (4.9) is BLUE as long as

η̂k−1 is unbiased.

Given that η̂k−1 and d̂k−1 are unbiased, the estimate η̂k is unbiased

E[η̃k] = E[(I −KkSk)η̃k|k−1 −Kk(ϵk +Ekξk)] = 0

for any Kk. Now consider the following optimization problem that minimizes

the trace of the covariance P η
k in Equation (4.5): minKk

tr(P η
k ). The problem

is an unconstrained convex optimization problem, and thus Kk is found by

taking the objective function derivative with respect to the decision variable

Kk and setting it equal to zero. The solution is Kk in Equation (4.6).

Therefore, η̂k is BLUE, provided that η̂k−1 and d̂k−1 are unbiased.

Given η̂0 is unbiased, d̂0 and η̂1 are BLUE by the above statements.

Also, given η̂k−1 is unbiased (because it is BLUE), d̂k−1 and η̂k are BLUE.

Therefore, η̂k and d̂k are BLUE for all k.

Given that η̂k is BLUE, one can show that ξ̂k is BLUE by the same logic

of the first paragraph in this proof. In sequel, q̂k is BLUE as well. We omit

its details. □

If we have multiple outputs in the same area, we can combine those

measurements into a single output by the optimal combination considering
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their covariance. So, now we assume that each region may have at most a

single measurement. Consider the following assumption.

Assumption 4.1 There exist s̄, h̄, ḡ, m̄, η > 0, such that the following

holds for all k ≥ 0:

∥Ss,k∥ ≤ s̄, ∥Hk∥ ≤ h̄, ∥Gk∥ ≤ ḡ,

∥Mk∥ ≤ m̄, P η
k ≥ ηI.

Assumption 4.1 is widely used to show the stability of Kalman filter [79,

80]. In input-state estimation, P η
k is bounded, if the transformed system is

uniformly observable [77, 78].

Since the measurement zs,k is provided by anonymous vehicles, the data

center does not know when they can get a measurement zs,k. We assume

the obtainment of measurement is a random arrival process. Poisson process

is a commonly used model for random and independent message arrivals.

Assumption 4.2 implies that the measurement zs,k at area s ∈ D is randomly

and independently obtained.

Assumption 4.2 For any s ∈ D, the measurement zs,k is obtained as a

Poisson arrival process with arrival rate λ. The value zs,k is independent of

the Poisson distribution.

Under the assumptions mentioned above, we can show the performance

of the state estimation error.

Theorem 4.1 Under Assumptions 4.1 and 4.2, the expected error E[∥q̃k∥] is

practically exponentially stable in probability, i.e., there exist a set of positive
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constants a, γ, and c such that

E[∥q̃k∥] ≤ ae−γk + c. (4.14)

Proof: For this analysis, we reformulate the output model as follows:

zk = [z⊤
s1
, · · · , z⊤

sn ]
⊤, (4.15)

which is the collection of outputs for all the areas, where zsi = 0 if si /∈ Ok.

Let us introduce an indicator matrix Ik = diag(is1,k, · · · , isn,k), where isj ,k =

I if sj ∈ Ok, isj ,k = 0 otherwise.

Consider matrices Mk and Kk with appending zeros to Mk and Kk such

that Equations (4.3) and (4.5) can be replaced with

η̂k|k−1 = Hk−1η̂k−1 +MkIk(zk − µk − SkHk−1η̂k−1)

η̂k = η̂k|k−1 +KkIk(zk − µk − Skη̂k|k−1),

where Kk = KkIk and Mk = MkIk hold because we’ve appended zeros to Kk

and Mk. Note that zk in the above equation represents all the measurements

in Equation (4.15). Given this notation, we have the error dynamics:

η̃k = (I −KkSk)η̃k|k−1 −Kk(ϵk +Ekξk)

= (I −KkSk)(I −Gk−1MkSk)Hk−1η̃k−1 + (I −KkSk)(I −Gk−1MkSk)ζk−1

− ((I −KkSk)Gk−1Mk +Kk)(ϵk +Ekξk).
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Choose the Lyapunov function candidate

Vk = η̃⊤
k (P

η
k )

−1η̃k

= η̃⊤
k−1H̄

⊤
k−1(I −KkSk)

⊤(P η
k )

−1(I −KkSk)H̄k−1η̃k−1

+ 2η̃⊤
k−1H̄

⊤
k−1(I −KkSk)

⊤(P η
k )

−1((I −KkSk)ζ̄k−1 + K̄kϵ̄k)

+ ζ̄⊤
k−1(I −KkSk)

⊤(P η
k )

−1(I −KkSk)ζ̄k−1 + 2ζ̄⊤
k−1(I −KkSk)

⊤(P η
k )

−1K̄kϵ̄k

+ ϵ̄⊤k K̄
⊤
k (P

η
k )

−1K̄kϵ̄k, (4.16)

where

H̄k = (I −Gk−1MkSk)Hk−1

K̄k = −(I −KkSk)Gk−1Mk −Kk

ζ̄k−1 = (I −Gk−1MkSk)ζk−1.

Under Assumption 4.1, there exists δ ∈ (0, 1) such that

η̃⊤
k−1H̄

⊤
k−1(I −KkSk)

⊤(P η
k )

−1(I −KkSk)H̄k−1η̃k−1 < δη̃⊤
k−1(P

η
k−1)

−1η̃k−1

(4.17)

by Claim 3.1.

Since the interarrival interval of measurements follows an exponential

distribution with λ by Assumption 4.2, we have

E[iα] = 1α
∫ ϵ

0

λe−λxdx+ 0α
∫ ∞

ϵ

λe−λxdx = 1− e−λϵ

for some non-negative integer α ≥ 0, where ϵ is a sampling interval.

The diagonal indicator matrix Ik satisfies E[I] = E[II⊤] = (1 − e−λϵ)I
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and thus

E[IQI⊤] = E[II⊤]E[Q] = (1− e−λϵ)E[Q] (4.18)

for any independent square matrix Q. Under Assumption 4.1, there exists

positive constant c0 such that

E[ζ̄⊤
k−1(I −KkSk)

⊤(P η
k )

−1(I −KkSk)ζ̄k−1 + ϵ̄⊤k K̄
⊤
k (P

η
k )

−1K̄kϵ̄k] ≤ (1− e−λϵ)c0

(4.19)

by Equation (4.18) and Claim 3.2. From Equations (4.17) and (4.19), the

Lyapunov function in Equation (4.16) becomes

E[Vk] ≤ δE[Vk] + (1− e−λϵ)c0 ≤ δkE[V0] +
k−1∑
i=0

δi(1− e−λϵ)c0

≤ δkE[V0] +
(1− e−λϵ)c0

1− δ
.

Therefore, we have

E[∥η̃k∥2] ≤
p̄

p
δkE[∥η̃0∥2] +

(1− e−λϵ)c0p̄
1− δ

.

It follows that there exist a1, γ1, c1 > 0 such that

E[∥η̃k∥] ≤ a1e
−γ1kE[∥η̃0∥] + c1

Since E[∥ϵs∗,k∥] < c2, and E[∥ζk∥] < c3, by Equations (4.12) and (4.13), we

have

E[∥q̃s∗,k∥] ≤ E[∥Ss∗,kη̃k∥] + E[∥ξ̃s∗,k∥] ≤ ae−γkE[∥η̃0∥] + c
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for some positive constants a, γ, and c. □

Constant c in Equation (4.14) can be seen as the expected error bound

of the prior estimation, where the first term decays exponentially.

4.4 Simulation Examples

The cornering stiffness Cf (and Cr) is the coefficient related to the lateral

force and sliding angle. This parameter is closely related to the road friction.

In this simulation, we will conduct one FRRF algorithm by systematically

combining environmental measurements zs,k from anonymous vehicles and

weather forecasts µs,k and use the distribution of qs,k to estimate both cor-

nering stiffness through vehicle-to-cloud (V2C) communication.

For the cornering stiffness estimation problem, we assume µs,k is a func-

tion of weather forecast Ws,k (including temperature, precipitation, humid-

ity, wind, and more), i.e., µs,k = F(Ws,k). The mapping function F(·) can

be found by standard learning/regression algorithms (e.g., Gaussian pro-

cess regression, neural network, basis function regression) by using historical

input-output data. This chapter assumes that the function F is given.

We consider the road as the square area that is divided into 25 identical

small squares, i.e., nD = 25. The ground truth cornering stiffness holds

Cf = Cr for all the areas.

Consider the stochastic process qs,k described in Equation (4.1) and Equa-

tion (4.2). Matrices Ss,k are chosen to be the W-wavelets as in [74, 81].

Matrices Hk and Gk are chosen to be identity matrices. Noises are zero-

mean Gaussian with known covariance P ϵ
s,k = 10, P ξ

s,k = 100, and P ζ
k =

100I. Predictive cornering stiffnesses from the weather forecast are ran-

domly generated by uniform distribution for each time k and each area,
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Figure 4.1: Estimation heatmap. The color represents the mean value of
the estimate in the corresponding area.

i.e. µs,k ∼ Unif(Cice, Cdry) for ∀k, s, except s = 1, 2, where Cice = 19000

and Cdry = 84000 are the conservative lower bound and upper bound. We

intentionally choose time-invariant µ1,k and µ2,k for all k to compare the

fine-scale tracking performance. The data center obtains the measurement

zs,k (for each area) as a Poisson distribution with parameter λ = 20. The

unmodeled system uncertainty dk is made up of dk = 100 sin(kπ).

Given the initial condition η̂0 = 0 with covariance P η
0 = 1000I, we

conduct FRRF algorithm, and present the simulation results in Figures 4.1

and 4.2. For each time k, FRRF generates a heat map for the cornering

stiffness. Figure 4.1 presents a series of heat maps produced by the FRRF

algorithm, where the color represents the mean value q̂s,k of the corresponding

area s. Figure 4.2 compares the tracking errors when the outputs are sparsely

measured (as a Poisson with λ = 20) and are fully measured at areas 1 and 2.

Areas 1 and 2 are the left bottom corner and its right cell, respectively. The

estimation errors for all areas remain in their noise level. FRRF algorithm

estimates the ground truth cornering stiffness resiliently, where the errors

do not depend on the presence of dk, as shown in the first subfigure. FRRF
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with the full measurement exhibits an improved tracking performance of fine-

scale variation a lot than that with the sparse measurement, as presented

in the second and third subfigures. This is because FRRF with the full

measurement successfully reduces the estimation error by compensating for

unmodeled uncertainty at each iteration. The average trace norm of variance

in the whole area is tr(P q,full
k ) = 1983.7 with the full measurement and

tr(P q,λ=20
k ) = 3190.4 with the sparse measurement.

Figure 4.2: Prior estimation performance; (top) total estimation error;
(middle, bottom) ground truth cornering stiffness and estimates with the
full measurement and sparse measurement at areas 1 and 2.
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Chapter 5

Proactive Control Architecture

Figure 5.1: Overall architecture. The data center provides a prior estimate.
Controller and velocity are proactively designed based on it for each area of
the road.

This chapter proposes a novel proactive robust adaptive control archi-

tecture for autonomous vehicles to operate with guaranteed performance in

various environmental conditions. Figure 5.1 illustrates the overall system

architecture. The prior of the cornering stiffness for different areas is esti-

mated by a newly developed fixed rank resilient filter (FRRF) in Chapter 4

that fuses information from the weather forecast and vehicle network data.

The L1 adaptive heading controller and nominal longitudinal velocity are de-

signed proactively for each area, based on the prior distribution of the corner-

ing stiffness. The proactive adaptive controller design will reduce long-term
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and large-scale uncertainty, while the L1 adaptive feedback controller deals

with residue uncertainty from filtered data. Then, based on the posterior

distribution of cornering stiffness obtained from the onboard measurements,

the control parameters are updated.

5.1 Vehicle Lateral Dynamics and Problem

Statement

The bicycle model is a simplified vehicle model that has been widely used and

has been proven as a good approximation [82, 83, 69]. Consider Figure 5.2, in

which the variables py, pψ, V , and δ denote the lateral position, yaw angle,

(longitudinal) velocity, and front steering angle, respectively. Parameters

Cf , Cr, m, Iz, ℓf , and ℓr are the front/rear cornering stiffness, mass, yaw

moment of inertia, and distance of front/rear tire from the center of gravity,

respectively.

Figure 5.2: Vehicle lateral dynamics.

Given a constant velocity V , the dynamics of the collective state p =
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[py, ṗy, pψ, ṗψ]⊤ with heading input u = δ are described by ((2.31) in [69])

ṗ = Aop+ bou, (5.1)

where the system matrices are

Ao =



0 1 0 0

0 −2Cf+Cr

mV
0 −V − 2

Cf ℓf−Crℓr
mV

0 0 0 1

0 −2Cf ℓf−Crℓr
IzV

0 −2Cf ℓ
2
f+Crℓ2r
IzV


, bo =



0

2Cf

m

0

2Cf ℓf
Iz


.

Given the desired lateral position py,des (center of the lane) and the desired

yaw angle pψ,des, the bicycle model in Equation (5.1) can be reformulated as

error dynamics ((2.45) in [69]):

ẋ = A(V,Cf , Cr)x+ b(Cf )u+ g(V,Cf , Cr)ṗ
ψ,des, (5.2)

where x = [x1, ẋ1, x2, ẋ2]
⊤, x1 ≜ py − py,des and x2 ≜ pψ − pψ,des are the error

states. The rate of the desired yaw angle is found by ṗψ,des = V
R

, where R is

the radius of the road. The system matrices are

A(V,Cf , Cr) =



0 1 0 0

0 −2Cf+Cr

mV
2
Cf+Cr

m
2
−Cf ℓf+Crℓr

mV

0 0 0 1

0 −2Cf ℓf−Crℓr
IzV

2
Cf ℓf−Crℓr

Iz
−2Cf ℓ

2
f+Crℓ2r
IzV


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b(Cf ) = bo, g(V,Cf , Cr) =



0

−2Cf ℓf−Crℓr
mV

− V

0

−2Cf ℓ
2
f+Crℓ2r
IzV


.

It is worth emphasizing that matrices A and g depend on velocity V , and

that the matrices A, b, and g depend on cornering stiffnesses Cf and Cr.

For notational simplicity, we express them as A(V ), b, and g(V ), when their

dependency on cornering stiffnesses does not need to be emphasized.

The cornering stiffness varies for vehicles depending on many factors such

as tire width, size, and type. In this chapter, we assume that the vehicles in

the network have a similar hardware setup to avoid such complexity. Fur-

thermore, any further inaccuracies can be considered uncertainties in esti-

mation and prediction. The cornering stiffnesses Cf and Cr are assumed to

be unknown, and we can estimate them using FRRF from Chapter 4. We

formulate the problem of interest as follows.

Problem Statement 5.1 The problem is to develop a robust control ar-

chitecture that stabilizes the error dynamics (Equation (5.2)) of the vehicle

operating under different environmental conditions through controlling the

heading u = δ and designing the longitudinal velocity V .

5.2 Proactive Robust Adaptive Control

Given prior estimates Ĉf and Ĉr of the cornering stiffness with their quan-

tified uncertainties P Cf and P Cr found by q̂s∗,k and P q
s∗,k

in the FRRF

described in Chapter 4, we implement the L1 adaptive controller [84] for the

lane-keeping control, which provides rapid disturbance compensation within
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the filter bandwidth, while guaranteeing transient and steady-state perfor-

mance. Different controllers should be designed for different areas because

the prior distribution of the cornering stiffness varies by location. The cur-

rent section provides a controller design for one area s, and the same design

procedure can be repeated for all other areas of interest.

Chapter 5.2.1 introduces the L1 adaptive controller on its nominal sys-

tem [84]. Chapter 5.2.2 discusses how to transform the error dynamics (Equa-

tion (5.2)) to the nominal system for the L1 adaptive controller using the

prior distribution of the cornering stiffness. In particular, the nominal sys-

tem model for the L1 adaptive controller is determined by the mean of the

prior distribution obtained in Chapter 4, and a 95% confidence interval of

the uncertainty bounds. Chapter 5.2.3 provides the design procedure for the

L1 adaptive controller and the velocity for the error dynamics.

5.2.1 L1 Adaptive Controller

Consider the following system:

ẋ(t) = Amx(t) + bm(wuad(t) + θ⊤x(t) + σ(t))

y(t) = c⊤x(t) x(0) = x0, (5.3)

where Am, bm, and c are known system matrices/vectors, and Am is Hur-

witz. Parameter w ∈ R represents the unknown input gain, and the state-

dependent uncertainty is represented by bmθ
⊤x(t), where θ is an unknown

vector. The uncertain parameters satisfy Assumption 5.1. The signal σ(t)

represents the time-varying external disturbance that satisfies Assumption 5.2.

Assumption 5.1 We have w ∈ Ω = [wl, wu], and θ ∈ Θ, where the bound

[wl, wu] and convex set Θ are known.
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Assumption 5.2 The disturbance signal σ(t) is continuously differentiable,

and the signal and its derivative are uniformly bounded, i.e., |σ(t)| ≤ ∆, and

|σ̇(t)| ≤ dσ <∞ for ∀t ≥ 0, where the bounds ∆ and dσ are known.

The control input uad(t) is an adaptive controller that consists of state pre-

dictor, adaptation law, and low-pass filter. In what follows, we describe the

L1 adaptive controller.

State predictor: The state predictor is given by

˙̂x(t) = Amx̂(t) + bm(ŵ(t)uad(t) + θ̂⊤x(t) + σ̂(t))

ŷ(t) = c⊤x̂(t) x̂(0) = x̂0.

Adaptation laws: The adaptation laws are given by:

˙̂w(t) = ΓProj(ŵ(t),−x̃⊤(t)Pbmuad(t)) ŵ(0) = ŵ0

˙̂
θ(t) = ΓProj(θ̂(t),−x̃⊤(t)Pbmx(t)) θ̂(0) = θ̂0

˙̂σ(t) = ΓProj(σ̂(t),−x̃⊤(t)Pbm) σ̂(0) = σ̂0,

where x̃(t) = x̂(t)− x(t) is the prediction error, and Γ > 0 is an adaptation

gain, Proj(·, ·) is the projection operator defined in Definition B.3 in [84].

The projection operator guarantees that each estimate remains in its desired

domain. Matrix P is a symmetric positive definite matrix, solving the alge-

braic Lyapunov equation AmP + PA⊤
m = −Q for a given symmetric positive

definite matrix Q.

Control law: The adaptive control input is designed by

uad(s) = −kD(s)(η̂(s)− kgr(s)),
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where η̂(t) = ŵ(t)uad(t) + θ̂⊤(t)x(t) + σ̂(t) and kg = −1/(c⊤A−1
m bm), and

k > 0 is a constant. The signal r(s) is the Laplace transform of the reference

signal, and D(s) is a strictly proper transfer function that leads to a strictly

proper stable low-pass filter

C(s) =
wkD(s)

1 + wkD(s)

with C(0) = 1. We choose D(s) = 1/s in this paper. We need to choose

the controller such that the L1-norm condition is satisfied: ∥G(s)∥L1L < 1,

where G(s) = H(s)(1−C(s)), H(s) = (sI−Am)−1bm, and L = maxθ∈Θ ∥θ∥1.

Since θ is constant and D(s) = 1/s, the L1-norm condition reduces to

Ag =

 Am + bmθ
⊤ bmw

−kθ⊤ −kw

 (5.4)

being Hurwitz for all θ ∈ Θ and w ∈ Ω0.

5.2.2 System Transformation and Bounds of

Uncertainties

The system Equation (5.2) is uncertain, where the system matricesA(V,Cf , Cr)

and b(Cf ) depend on unknown cornering stiffness Cf and Cr, while Am and

bm in Equation (5.3) are known. We will use the mean values Ĉf = q̂s∗,k (and

Ĉr = q̂′s∗,k for rear cornering stiffness) of the prior distribution to construct

uncontrolled nominal system matrices, i.e., A(V, Ĉf , Ĉr) and b(Ĉf ). Consider

the control input u = um + uad, where we will later choose um ≜ −kmx such

that Am(V ) = A(V, Ĉf , Ĉr)−bmkm becomes Hurwitz and bm ≜ b(Ĉf ). Then,

the system Equation (5.2) becomes the nominal system Equation (5.3) for
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the L1 adaptive controller, where the following relations approximate the

uncertainties:

b(Cf ) = bmw

θ =
1

w
b†m(A(V,Cf , Cr)− A(V, Ĉf , Ĉr)) + km(

1

w
− 1)

σ = b†mgṗ
ψ,des (5.5)

with b†m = [0, m

4Ĉf
, 0, Iz

4Ĉf ℓf
].

It is required to approximate the bounds of uncertainties Θ, Ω, ∆, and

dσ to design the L1 adaptive controller. To provide those sets, we as-

sume that the cornering stiffness’s actual value is bounded by its 95% con-

fidence interval of the prior distribution N (Ĉf , P
Cf ) = N (q̂s∗,k, P

q
s∗,k

) (or

N (Ĉr, P
Cr) = N (q̂′s∗,k, P

q′

s∗,k
) for rear cornering stiffness), i.e., given the prior

distributions, we have constants Cf , C̄f , Cr, and C̄r that

Cf ∈ [Cf , C̄f ], Cr ∈ [Cr, C̄r]. (5.6)

Assumption 5.3 is a mild condition, because the typical vehicle model

satisfies ℓr ≥ ℓf and Iz ≥ m, as shown in [69]. In Assumption 5.4, the first

condition implies that the road’s curve is bounded, and the second condition

implies that the change of the curve is bounded.

Assumption 5.3 (Vehicle model) The vehicle model satisfies ℓr ≥ ℓf and

Iz
ℓr
ℓf
−m ≥ 0.

Assumption 5.4 (Radius of road) We have R ≥ R and | Ṙ
R2 | ≤ R̄d for

some R, R̄d > 0.

Lemma 5.1 Consider Assumptions 5.3 and 5.4. Given Equation (5.5) and
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Equation (5.6), the bounds of uncertainties are found by

Ω = [
Cf

Ĉf
,
C̄f

Ĉf
]

∆(V ) =
1

2ĈfR
(2C̄fℓf + C̄rℓr(

ℓr
ℓf
− 1) +

mV 2

2
)

dσ(V ) =
R̄d

2Ĉf
(2C̄fℓf + C̄rℓr(

ℓr
ℓf
− 1) +

mV 2

2
)

Θ(V ) =
1

V
(Θ1 ×Θ2 ×Θ3 ×Θ4), (5.7)

where

Θ1 = k(1)m V Ξ, Θ3 = k(3)m V Ξ

Θ2 = [−(m+ Iz)(C̄f − Ĉf )
2mCf

+
(Iz

ℓr
ℓf
−m)(Cr − Ĉr)
2mC̄f

,

−
(m+ Iz)(Cf − Ĉf )

2mC̄f
+

(Iz
ℓr
ℓf
−m)(C̄r − Ĉr)
2mCf

] + k(2)m V Ξ

Θ4 = [−(m+ Iz)(C̄f − Ĉf )
2mCf

+
(Iz

ℓr
ℓf
−m)(Cr − Ĉr)
2mC̄f

,

−
(m+ Iz)(Cf − Ĉf )

2mC̄f
+

(Iz
ℓr
ℓf
−m)(C̄r − Ĉr)
2mCf

] + k(4)m V Ξ (5.8)

and k(i)m is the ith element of km, and Ξ ≜ [
Ĉf

C̄f
− 1,

Ĉf

Cf
− 1].

Proof: The vector b in Equation (5.2) can be reformulated by b = bm
Cf

Ĉf
=

bmw. Therefore, for any Cf ∈ [Cf , C̄f ], we have

w ∈ Ω = [
Cf

Ĉf
,
C̄f

Ĉf
]. (5.9)
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The uncertainty θ in Equation (5.5) can be found by

θ =
1

2V w
[0,−(m+ Iz)∆Cf

mĈf
+

(Iz
ℓr
ℓf
−m)∆Cr

mĈf
, 0,

− (m+ Iz)∆Cf

mĈf
+

(Iz
ℓr
ℓf
−m)∆Cr

mĈf
]⊤ + km(w

−1 − 1), (5.10)

where ∆Cf ≜ Cf−Ĉf and ∆Cr ≜ Cr−Ĉr. Given the bounds of Cf and Cr in

Equation (5.6) and that of w in Equation (5.9), the bounds of each element

θi in Equation (5.10) are found by Equation (5.8), where Iz ℓrℓf − m ≥ 0 in

Assumption 5.3 has been applied.

Likewise, σ(t) in Equation (5.5) is expressed as

σ = − 1

2ĈfR
(2Cfℓf + Crℓr(

ℓr
ℓf
− 1) +

mV 2

2
),

and its time-derivative becomes

σ̇ = b†mG
∂ṗψ,des

∂R
Ṙ

=
Ṙ

2ĈfR2
(2Cfℓf + Crℓr(

ℓr
ℓf
− 1) +

mV 2

2
).

Since ℓr
ℓf
−1 ≥ 0 by Assumption 5.3, we have (2Cfℓf+Crℓr( ℓrℓf −1)+

mV 2

2
) > 0.

The bounds R ≥ R and | Ṙ
R2 | ≤ R̄d hold by Assumption 5.4 and lead to

Equation (5.7). □

Notice that the sets Θ(V ), ∆(V ), and dσ(V ) are a function of the velocity

V .
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5.2.3 Nominal Velocity Design

The L1 adaptive controller guarantees transient and steady-state perfor-

mance with respect to the reference system and design system. The ref-

erence system is the non-adaptive version of the L1 adaptive controller. The

design system is an ideal system that does not depend on the uncertainties.

According to Theorem 2.2.2 in [84], the performance of the system can be

rendered arbitrarily close to the reference system (xref (t) and uref (t)) by in-

creasing the adaptation gain Γ without sacrificing robustness. Lemma 2.1.4

in [84] analyzes the error between the reference system and the design system

(∥xref −xdes∥L∞ and ∥uref −udes∥L∞), where its upper bound is proportional

to ∥G(s)∥L1 . The term ∥G(s)∥L1 can be close to zero by arbitrarily increas-

ing the filter bandwidth k. However, this performance improvement trades

off with the robustness. In particular, the time-delay margin decreases to

zero, as k increases to infinity. Therefore, we need to design km, C(s), and

V balancing the performance and robustness optimally.

The matrix Am(V ) must be Hurwitz, but it depends both on gain km

and velocity V . To relax this complexity, we propose to use the common

Lyapunov function approach. We first design control gains km and P such

that Am(V ) is Hurwitz for any velocity V ∈ [Vmin, Vmax], where Vmin and

Vmax are the minimum and maximum velocity of the area, respectively. Since

the legal minimum and maximum speed (i.e., speed limits) on specific road

traffic are known, we assume that Vmin and Vmax are known, and Vmin = 0

if no minimum speed is provided. Upon that, we choose the velocity V and

filter C(s) simultaneously through an optimization problem.

Given Ĉf and Ĉr, we should choose a constant vector km and a symmetric
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positive definite matrix P such that

Am(V )P + PA⊤
m(V ) < 0 (5.11)

holds for all Vmin ≤ V ≤ Vmax. One does not need to explore the entire

domain of V , but only needs to check the minimum Vmin and maximum

Vmax.

Lemma 5.2 Assume that there exists 0 ≤ α(V ) ≤ 1 such that Am(V ) =

α(V )Am(Vmin) + (1− α(V ))Am(Vmax) for any Vmin ≤ V ≤ Vmax. Then there

exists a positive definite matrix Q(V ) such that Am(V )P+PA⊤
m(V ) = −Q(V )

for any Vmin ≤ V ≤ Vmax if and only if Am(Vmin)P + PA⊤
m(Vmin) = −Qmin,

and Am(Vmax)P +PA⊤
m(Vmax) = −Qmax for some symmetric positive definite

matrices P , Qmin, and Qmax.

Proof: If Am(V )P + PA⊤
m(V ) < 0 for all Vmin ≤ V ≤ Vmax, it is obvious that

the same inequality holds for V = Vmin and V = Vmax.

We prove sufficiency:

Am(V )P + PA⊤
m(V )

= α(V )(Am(Vmin)P + PA⊤
m(Vmin)) + (1− α(V ))(Am(Vmax)P + PA⊤

m(Vmax))

= −α(V )Qmin − (1− α(V ))Qmax.

Since the right hand side is negative definite, the statement holds with

Q(V ) = α(V )Qmin + (1− α(V ))Qmax. □

For any V ∈ [Vmin, Vmax], we have

Am(V ) = α(V )Am(Vmin) + (1− α(V ))Am(Vmax)
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for α(V ) =
VminVmax

V
−Vmin

Vmax−Vmin
. Therefore, by Lemma 5.2, we can choose km and

P such that the condition in Equation (5.11) holds both for Vmin and Vmax.

The adaptation gain Γ > 0 can be chosen as a very large number to enhance

the adaptation performance.

We can choose the filter gain k and the velocity V balancing the per-

formance and robustness. The performance is characterized by ∥G(s)∥L1

as in [85]. The robustness is characterized by an upper bound of k, which

prevents the time-delay margin from converging to zero. The optimization

problem can be formulated by

max
k,V ∈[Vmin,Vmax]

V

s.t. ∥G(s)∥L1 ≤ λgp, for ∀w ∈ Ω

k ≤ k̄ (5.12)

for some constants k̄ > 0 and λgp <
1
L

. Recall that G(s) = H(s)(1 − C(s)).

Given λgp, one could find the performance bounds of ∥xref − xdes∥L∞ and

∥uref − udes∥L∞ in Lemma 7 in [86]. It is worth noticing that all existing

performance and stability analyses on the L1 adaptive controller are still

valid. This is because the current chapter designs the controller proactively

while applying it with output feedback.

5.2.4 Real-Time Controller Update

It is critically important to ensure that the matrices Am and Ag are Hurwitz

for all possible uncertainties. Given the posterior distribution N (Ĉpos
f , PCpos

f )

(or N (Ĉpos
r , PCpos

r ) for rear cornering stiffness) from Kalman filter, we can

construct the 95% confidence interval of the posterior distribution of Cf and
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Cr. We check online whether Ag(V ) is Hurwitz for the new set of uncer-

tainties. If it does not hold, we update k in real-time such that Ag(V ) is

Hurwitz:

k = arg min
k

|k − k∗|

s.t. Ag(V ) being Hurwitz, k ≤ k̄

where k∗ is the current gain. It is worth to note that Am does not need to be

re-tuned, because it depends only on Ĉf and Ĉr, and not on the bounds of

uncertainties. Furthermore, we design it to be Hurwitz for the entire possible

velocity range.

Figure 5.3: Simulation scenarios.

5.3 Simulations

The current section demonstrates the performance of the proposed control

architecture. Based on the prior estimate, we design the L1 adaptive con-

troller for the areas of interest and illustrate the lane keeping performance

discussed in Chapter 5.3.1. The specific scenario is depicted in Figure 5.3.

Lastly, we show a trend of maximum velocity in Equation (5.12) with respect
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to changing nominal cornering stiffness in Chapter 5.3.2.

5.3.1 Proactive Adaptive control

Figure 5.4: Rainy condition. Error states and control inputs in area 1
(C1,f = C1,r = 51867).

Figure 5.5: Snowy condition. Error states and control inputs in area 2
(C2,f = C2,r = 23214).

The current section compares the tracking performance of the proactive

L1 adaptive control and a non-proactive version of it. We refer to [87] to

compare the L1 adaptive controller’s performance with that of other types

of controllers.
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The vehicle’s system parameters are as follows [87]: m = 1573, Iz =

2873, ℓf = 1.1, ℓr = 1.58. To challenge the maneuver, we choose the time-

varying radius of the road R(s) = 15 sin( 1
120
s) + 30 for area 1 and area 2,

where s is the arc length. The vehicle operates in areas 1 and 2, where

the ground truth cornering stiffnesses are C1,f = C1,r = q1,50 = 51867, and

C2,f = C2,r = q2,50 = 23214 at time k = 50. Controllers are designed based

on the prior distribution at time k = 50, i.e., q1,k ∼ N (51826, 1413) and

q2,k ∼ N (23240, 1937). This scenario is depicted in Figure 5.3.

Performance bound is chosen to be λgp = 0.585, and k̄ = 10. Given the

performance bound and distributions for areas 1 and 2 in Chapter 4.4, we

design the L1 adaptive controller for areas 1 and 2 as follows:

k1,m = k2,m =

[
0.7223 2.5855 −0.6669 0.1873

]⊤
,

k1 = k2 = 10, V1 = 18.61, V2 = 12.96, Γ1 = Γ2 = 100000,

P1 =



1.9111 0.0053 0.3485 0.0090

0.0053 0.0196 −0.0052 −0.0294

0.3485 −0.0052 5.2183 0.0438

0.0090 −0.0294 0.0438 0.0543


,

and

P2 =



1.9064 0.0180 0.4485 0.0483

0.0180 0.0636 −0.0211 −0.0928

0.4485 −0.0211 3.9649 0.1609

0.0483 −0.0928 0.1609 0.1834


.

For a comparison, we also consider the non-proactive controller for area 2
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designed using knp,m = k2,m, knp = k2, Vnp = 22.96, Γnp = Γ2, and

Pnp =



1.9195 0.0153 0.3201 0.0119

0.0153 0.0360 0.0095 −0.0532

0.3201 0.0095 8.0706 0.0908

0.0119 −0.0532 0.0908 0.1015


.

Figure 5.4 presents the performance of the proactively designed L1 adap-

tive controller under the rainy condition (C1,f = C1,r = 51867). The con-

troller can successfully stabilize the error dynamics under the changing road

radius. With a large adaptation gain, the system performance is arbitrarily

close to that of the reference system.

Figure 5.5 compares the proactive L1 adaptive controller’s tracking per-

formance and the non-proactive version under the snowy condition and chang-

ing road radius. The system with the proactive controller does not have per-

formance degradation compared to operation in the rainy condition. We

found that the non-proactive controller designed for dry road conditions

(around Cf = Cr = 80000) failed to stabilize the system. As discussed

before, one could increase k to guarantee stability, but this will harm the

robustness. To illustrate the performance difference between the proactive

controller and non-proactive controller without increasing k, we consider the

controller designed for Cf = Cr = 60000. The non-proactive controller could

also stabilize the error dynamics through compensation of uncertainties, but

presents a relatively large error, when the vehicle operates outside of its

nominal status.
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5.3.2 Vehicle Velocity Curve

We study a trend of maximum velocity chosen by the optimization problem

in Equation (5.12). The control parameters, performance bound, and the

bound of k remain unchanged throughout the range of cornering stiffness for

a fair comparison. The maximum velocity decreases as the nominal cornering

stiffness decreases, as shown in Figure 5.6. The proposed control architecture

slows down the vehicle in advance to guarantee the desired performance and

robustness, when the road is expected to be slippery from the prior estimate.

Figure 5.6: Velocity designed by Equation (5.12) with respect to changing
nominal cornering stiffness Ĉf = Ĉr.
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Chapter 6

Interval Estimation under
Uncertainties

6.1 Positive System and Problem

Formulation

Positive systems Consider the following system

xk+1 = Akxk +Bkuk

yk = Ckxk,

(6.1)

where xk, uk and yk are the state, control input and system output, respec-

tively.

Definition 6.1 (Positive system) The system in Equation (6.1) is a posi-

tive system if for every positive initial condition and control input, i.e. x0 ≥ 0

and u0 ≥ 0, the state and the system output are positive, i.e. xk ≥ 0 and

yk ≥ 0 ∀k ∈ Z+.

Definition 6.2 (Nonnegative matrix) The matrix A is a nonnegative

matrix if all of its elements aij are equal to or greater than zero, i.e. aij ≥ 0

∀i, j.

Theorem 6.1 (Theorem 2.6 in [88]) The system in Equation (6.1) is a

positive system if Ak, Bk, Ck and Dk are nonnegative matrices.
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Consider the following system:

xk+1 = Akxk +Bkuk + ωk

yk = Ckxk + νk,

(6.2)

where xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rp and yk ∈ Rm are the system state, the

control input and the system output, respectively. The matrices Ak, Bk and

Ck are known. Noises ωk ∈ Rn and νk ∈ Rm are unknown, but they are

element-wise bounded by the known constant vectors, i.e., w ≤ ωk ≤ w and

v ≤ νk ≤ v.

Problem Statement 6.1 Consider the system in Equation (6.2). The ob-

jective of the interval estimation design is to recursively estimate the upper

bounds and lower bounds of the ground truth state, i.e. to obtain an interval

vector [xk,xk] that contains xk

xk ≤ xk ≤ xk

for all k ∈ Z+.

6.2 Algorithm Design

State prediction and estimation

Given the previous bounds of the system state xk−1 and xk−1, we predict

the bounds of the state by

x∗
k = Ak−1xk−1 +Bk−1uk−1 +w

x∗
k = Ak−1xk−1 +Bk−1uk−1 +w.

(6.3)
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Then the state estimation is induced by utilizing the output yk to correct

the prediction in Equation (6.3) as follows:

xk = x∗
k +Lk(yk −Ckx

∗
k − v)

xk = x∗
k +Lk(yk −Ckx

∗
k − v),

(6.4)

where gain matrices Lk and Lk will be selected later.

Positive error dynamics

To ensure the state and the uncertainty are bounded by Equation (6.4) is

equivalent to requiring the estimation errors

exk ≜ xk − xk

exk ≜ xk − xk

(6.5)

to be nonnegative for ∀k ∈ Z+, i.e. to be positive systems. The follow-

ing lemma states the conditions such that the error dynamics are positive

systems.

Assumption 6.1 Assume ex0 , e
x
0 ≥ 0.

Lemma 6.1 (State Estimation) Under Assumption 6.1, the ground truth

of the state is bounded by Equation (6.4), i.e. xk ≤ xk ≤ xk ∀k ∈ Z+, if the
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following conditions hold

(I −LkCk)Ak−1 ≥ 0 (6.6)

(I −LkCk)Ak−1 ≥ 0 (6.7)

(I −LkCk) ≥ 0 (6.8)

(I −LkCk) ≥ 0 (6.9)

−Lk ≥ 0 (6.10)

−Lk ≥ 0. (6.11)

Proof: The upper bound of the error dynamics exk is given by

exk =Ak−1e
x
k−1 + ewk−1Lk(CkAk−1e

x
k−1 +Cke

w
k−1 + evk)

=(I −LkCk)Ak−1e
x
k−1 + (I −LkCk)e

w
k−1 −Lke

v
k. (6.12)

We have exk ≥ 0 since the conditions in Equations (6.6), (6.8) and (6.10)

hold. The statement exk ≥ 0 can be proven by a similar procedure. Therefore

we have xk ≤ xk ≤ xk ∀k ∈ Z+. □

The gain matrices Lk and Lk are selected such that the upper bound is

minimized and the lower bound is maximized:

min
Lk≤0
∥xk∥

subject to (6.6), (6.8)
(6.13)

max
Lk≤0
∥xk∥

subject to (6.7), (6.9).
(6.14)
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Optimization problems in Equations (6.13) and (6.14) are linear program-

ming (LP) problems, which can be solved efficiently.

6.3 Simulation Results

This simulation study compares the performance and efficiency of three inter-

val estimation algorithms, i.e. the proposed approach, interval observer [89],

and set-membership method [90]. Considering a DC servo motor described

in [91], we use the same dynamic model and parameters used in [90]. The

interval estimations of the motor speed nmotor by the aforementioned algo-

rithms are shown in Figure 6.1. It shows that the proposed approach is

more accurate than the interval observer and has similar accuracy as the

set-membership method. In addition, the performance comparison including

the running time and the averaged estimation width (
∑
nmotor−nmotor

40
) is pro-

vided in Table 6.1, which demonstrates the reliability and efficiency of the

proposed approach.

0 10 20 30 40

�2

0

2

4

6

Figure 6.1: Comparison of interval estimation algorithms.
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Table 6.1: Performance comparison.

Algorithm Time (s) Estimation width (rad/s)
Proposed 0.880 1.003
Interval observer 1.283 3.693
Set-membership 12.399 0.852

6.4 Extension

This section extends the approach to the discrete-time system with model

uncertainties:

xk+1 = Akxk +Bkuk︸ ︷︷ ︸
a priori model

+ f(xk,uk)︸ ︷︷ ︸
model uncertainty

+ ωk

yk = Ckxk + νk,

(6.15)

where xk ∈ X ⊆ Rn, uk ∈ U ⊆ Rp and yk ∈ Rm are the system state,

the control input and the system output, respectively. The matrices Ak, Bk

and Ck are known. The unknown nonlinear function f : X × U → F ⊆ Rn

represents the model uncertainty. Noises ωk ∈ Rn and νk ∈ Rm are unknown,

but they are element-wise bounded by the known constant vectors, i.e. w ≤

ωk ≤ w and v ≤ νk ≤ v. Note that the we have no further assumptions

on F , which allows F to represent an arbitrarily large model uncertainty

set. At time k, we assume that the upper bound and the lower bound of the

previous state estimates xk−1 and xk−1 are given.

Remark 6.1 The proposed method can be applied to a wide class of sys-

tems because of the large uncertainty setup. The apriori model required in

Equation (6.15) can be a rough model.
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6.4.1 Unknown Dynamics Estimation

We can obtain the posterior bounds by the updating laws as follows:

gk−1 = M k

(
yk −Ckx

p
k − v

)
g
k−1

= M k

(
yk −Ckx

p
k − v

)
,

(6.16)

where

xpk ≜ Ak−1xk−1 +Bk−1uk−1 +w

xpk ≜ Ak−1xk−1 +Bk−1uk−1 +w

(6.17)

are the prior bounds of the state. The gain matrices M k and M k in Equa-

tion (6.16) will be selected later.

6.4.2 State Prediction and Estimation

Given the posterior bounds of the unknown dynamics gk−1 and g
k−1

, we

predict the bounds of the state by

x∗
k = Ak−1xk−1 +Bk−1uk−1 + gk−1 +w

x∗
k = Ak−1xk−1 +Bk−1uk−1 + g

k−1
+w.

(6.18)

Then the state estimation is induced by utilizing the output yk to correct

the prediction in Equation (6.18) as follows:

xk = x∗
k +Lk(yk −Ckx

∗
k − v)

xk = x∗
k +Lk(yk −Ckx

∗
k − v),

(6.19)

where gain matrices Lk and Lk will be selected later.
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6.4.3 Positive Error Dynamics

To ensure the state and the uncertainty are bounded by Equation (6.19) and

(6.16) is equivalent to requiring the estimation errors

exk ≜ xk − xk

exk ≜ xk − xk

(6.20)

and

egk ≜ gk − gk

egk ≜ gk − g
k

(6.21)

to be nonnegative for ∀k ∈ Z+, i.e. to be positive systems. The follow-

ing lemmas state the conditions such that the error dynamics are positive

systems.

Assumption 6.2 Assume ex0 , e
x
0 ≥ 0.

Lemma 6.2 (Uncertainty Estimation) Consider Assumption 6.2 and as-

sume that exk, e
x
k ≥ 0 ∀k ∈ Z+. Then the uncertainty gk−1 is bounded by

Equation (6.16), i.e.

g
k−1
≤ gk−1 ≤ gk−1 (6.22)
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for all k ∈ Z+, if the following conditions hold

−M kCkAk−1 ≥ 0 (6.23)

−M kCkAk−1 ≥ 0 (6.24)

−M kCk ≥ 0 (6.25)

−M kCk ≥ 0 (6.26)

−M k ≥ 0 (6.27)

−M k ≥ 0. (6.28)

Proof: The proof of Equation (6.22) is equivalent to showing that the bounds

of the error dynamics in Equation (6.21) are nonnegative

egk−1 ≥ 0 and egk−1 ≥ 0. (6.29)

The upper bound of the error dynamics egk−1 can be described by

egk−1 = −M k(CkAk−1e
x
k−1 +Cke

w
k−1 + evk)

= −M kCkAk−1e
x
k−1 −M k(Cke

w
k−1 + evk), (6.30)

where ewk−1 ≜ w − ωk−1, and evk ≜ v − νk.

Since the conditions in Equations (6.23), (6.25) and (6.27) hold, all three

terms in Equation (6.30) are nonnegative, i.e. egk−1 ≥ 0. The statement

egk−1 ≥ 0 can be proven by a similar procedure, which is omitted here. There-

fore we have Equation (6.29), which completes the proof. □

Remark 6.2 Lemma 6.2 holds under the assumption of the nonnegativity of

bounds of the state error dynamics. The following Lemma 6.3 demonstrates

the nonnegativity of exk and exk.
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Lemma 6.3 (State Estimation) Under Assumption 6.2, the ground truth

of the state is bounded by Equation (6.19), i.e. xk ≤ xk ≤ xk ∀k ∈ Z+, if

the following conditions hold

(I −M kCk)(I −LkCk)Ak−1 ≥ 0 (6.31)

(I −M kCk)(I −LkCk)Ak−1 ≥ 0 (6.32)

−(I −M kCk)Lk ≥ 0 (6.33)

−(I −M kCk)Lk ≥ 0 (6.34)

−Lk ≥ 0 (6.35)

−Lk ≥ 0. (6.36)

Proof: The upper bound of the error dynamics exk is given by

exk =Ak−1e
x
k−1 + egk−1 + ewk−1Lk(CkAk−1e

x
k−1 +Cke

g
k−1 +Cke

w
k−1 + evk)

=(I −LkCk)Ak−1e
x
k−1 + (I −LkCk)e

g
k−1 + (I −LkCk)e

w
k−1 −Lke

v
k.

(6.37)

Plugging Equation (6.30) into Equation (6.37), we have

exk =(I −LkCk)Ak−1e
x
k−1 + (I −LkCk)e

g
k−1 + (I −LkCk)e

w
k−1 −Lke

v
k

=(I −LkCk)(I −M kCk)Ak−1e
x
k−1

+ (I −LkCk)(I −M kCk)e
w
k−1 − (I −LkCk)M ke

v
k −Lke

v
k. (6.38)

We have exk ≥ 0 since the conditions in Equations (6.31), (6.33) and (6.35)

hold. The statement exk ≥ 0 can be proven by a similar procedure. Therefore

we have xk ≤ xk ≤ xk ∀k ∈ Z+. □

To ensure the error dynamics is a positive system, gain matrices should
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be selected under the constraints stated in Lemma 6.3. On top of this, gain

matrices M k and M k are selected such that the upper bound is minimized

and the lower bound is maximized:

min
Mk≤0

∥gk−1∥

subject to (6.23), (6.25)
(6.39)

max
Mk≤0

∥g
k−1
∥

subject to (6.24), (6.26).
(6.40)

Likewise, given M k and M k, the gain matrices Lk and Lk are selected

such that the upper bound is minimized and the lower bound is maximized:

min
Lk≤0
∥xk∥

subject to (6.31), (6.33)
(6.41)

max
Lk≤0
∥xk∥

subject to (6.32), (6.34).
(6.42)

Optimization problems in Equations (6.39) to (6.42) are linear programming

(LP) problems, which can be solved efficiently.

Lemma 6.4 Feasible sets for linear programming (LP) problems in Equa-

tions (6.39) to (6.42) are nonempty.

We omit the proof of this lemma because it is trivial to show that the zero

matrix is always in the feasible sets.
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Algorithm 3 Interval estimation for uncertainty and state
Require: learning (GP) prediction gpk−1 and gp

k−1
, measurement yk

▷ State priori
1: Obtain M k and M k by solving LP problems in Equations (6.39)

and (6.40);
2: [xpk,x

p
k]← State priori as in Equation (6.17);

▷ Uncertainty posterior
3: [gk−1, gk−1

]← Uncertainty posterior as in Equation (6.16);
▷ State prediction

4: [x∗
k,x

∗
k]← State prediction as in Equation (6.18);

▷ State estimation
5: Obtain Lk and Lk by solving LP problems Equations (6.41) and (6.42);
6: [xk,xk]← State estimation as in Equation (6.19);

Remark 6.3 It is worth to note that the proposed algorithm has a less re-

strictive assumption than that in [92], where there must be a set of observable

states which are free of unknown inputs all the time.

Remark 6.4 Optimization problems in Equations (6.39) to (6.42) minimize

the impact of external disturbances and the error propagation from the pre-

vious state estimate. The cost function is not unique. For example, we may

choose ℓ∞− ℓ∞ observer which minimizes the impact of external disturbances

ωk and νk as in [93].

Remark 6.5 Positive systems constitute a remarkable class of systems and

receive increasing attention and appear frequently in practical applications [88,

94, 95]. While we only assume the error dynamics to be a positive system, the

original system does not need to be a positive system. But if it is a positive

system, the LP problems in Equations (6.39) to (6.42) can be simplified, as

in Chapter 6.4.4.
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6.4.4 Interval Estimation for Positive Systems

Given that the system (Equation (6.15)) is a positive system, i.e. Ak,Bk,Ck ≥

0, Algorithm 3 can be simplified, as stated in the following Corollary 6.1.

Corollary 6.1 Consider Assumption 6.2 and assume that Ak,Bk,Ck ≥ 0.

Then the uncertainty gk−1 is bounded by Equation (6.16) and the state is

bounded by Equation (6.19), i.e.

g
k−1
≤ gk−1 ≤ gk−1

xk ≤ xk ≤ xk

for all k ∈ Z+, if the following conditions hold

I −M kCk ≥ 0 (6.43)

I −M kCk ≥ 0 (6.44)

−M k ≥ 0 (6.45)

−M k ≥ 0 (6.46)

I −LkCk ≥ 0 (6.47)

I −LkCk ≥ 0 (6.48)

−Lk ≥ 0 (6.49)

−Lk ≥ 0. (6.50)

Proof: Under the assumptions of this corollary, all the conditions in Lem-

mas 6.2 and 6.3 hold. By Lemma 6.3, the statement holds. □

In this case, the LP problems in Equations (6.39) to (6.42) are simplified
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as follows:

min
Mk≤0

gk−1

subject to (6.43)
(6.51)

max
Mk≤0

g
k−1

subject to (6.44)
(6.52)

min
Lk≤0

xk

subject to (6.47)
(6.53)

max
Lk≤0

xk

subject to (6.48).
(6.54)

Correspondingly, Lines 1 and 5 in Algorithm 3 can be replaced by the

above stated simpler optimization problems in Equations (6.51) to (6.54).
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Chapter 7

Conclusions and Future
Research

This dissertation studied a framework for cyber-physical systems (CPS) that

allows safe operation under significant uncertainties, such as malicious at-

tacks, unforeseen environments, and model uncertainties. Chapter 2 intro-

duced a case study of GPS spoofing attacks. We proposed a safety con-

strained control framework that adapts the UAV at a path re-planning level

to support resilient state estimation against GPS spoofing attacks. Using

the estimates of the attacker’s location obtained by the UKF with sliding

window outputs, an optimal escape controller is designed based on the con-

strained MPC such that the UAV escapes from the effective range of the

spoofing device within a safe time. The framework has been extended to

multi-UAV systems for time-critical coordination tasks. In Chapter 3, we

designed a constrained attack-resilient estimation algorithm (CARE) that can

simultaneously estimate the compromised system states and attack signals.

The proposed CARE has improved estimation accuracy and attack detection

performance after projection induced by inequality constraints. To the best

of our knowledge, we are the first to investigate the stability of the esti-

mation algorithm with inequality constraints and prove that the estimation

errors are practically exponentially stable in mean square. In Chapter 4, we

developed a proactive robust adaptive control architecture for autonomous

vehicles’lane-keeping control problems to deal with unforeseen environments

in advance. The data center estimates an environmental factor by synthesiz-
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ing weather forecasts and measurements from anonymous vehicles through

FRRF, a spatio-temporal filter. The estimates contribute in Chapter 5,

where we provided the systematic proactive-design procedure for the L1 ro-

bust adaptive controller for lateral vehicle control and nominal longitudinal

velocity design for proactive adaptation to each area of interest. Chapter 6

presented a novel interval state estimation method. The bounds can be ef-

ficiently found through a linear programming formulation. We empirically

showed the performance of the proposed interval state estimation algorithm

by comparing it to others. We extended the method to a class of systems with

a large uncertainty setup. We have investigated several resilient estimation

algorithms, including resilient state estimation, UKF with sliding window

outputs, resilient interval estimation, constrained attack-resilient estimation,

and fixed rank resilient filter. Then we utilized these resilient estimation al-

gorithms to support safe control designs for autonomous vehicles.

While the research in this dissertation attempts to achieve safe operation

for CPS under significant uncertainties by integrating resilient estimation

and safe control, many open questions are left for further research and de-

velopment. We list possible extensions and future directions as follows.
• In Chapter 3, we proposed a constrained attack-resilient estimation al-

gorithm that induces improved attack detection performance in terms

of false negative rate. Due to the improved estimation accuracy, a bet-

ter false positive rate is also expected. Providing rigorous analysis of

the false positive rate is one of the possible extensions. The algorithm is

designed for linear time-varying stochastic systems subject to linear in-

equality constraints. If the target system is nonlinear, the linearization

of the system is required. One needs to investigate how linearization er-

rors affect estimation and attack detection performances. Furthermore,
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we are interested in developing another constrained attack-resilient es-

timation algorithm for nonlinear systems. One possible approach is to

deal with the nonlinearity through sample-based filtering techniques.

• The proactive control architecture proposed in Chapter 5 enables a

good tracking performance by designing the heading angle and nominal

longitudinal velocity. However, regenerating the reference trajectory

for the L1 controller to follow might be necessary since the road condi-

tion has changed. Extending the current proactive control architecture

with a high-level motion planner would be practical. The tentative ap-

proach could be i) at the proactive level, developing a model predictive

controller based on the future road conditions estimated by FRRF; ii)

at the reactive level, designing the L1 controller to compensate for the

measured errors resulting from the proactive level.

• Recent years have seen tremendous efforts in integrating artificial intel-

ligence (AI) with control theory to establish unified frameworks for safe

CPS. The interval resilient estimation method proposed in Chapter 6

can be extended to a machine learning framework. Learning errors can

destabilize the system, and unexpected system behaviors may also af-

fect the performance of learning. The resilient interval estimation can

be utilized to correct the prediction from learning [96]. The proposed

estimation and machine learning framework will open various new re-

search directions: i) the machine learning-based reachability audit for

backup model predictive control ([97]), ii) the spatio-temporal filtering

on vehicle-to-cloud (V2C) communication and proactive control frame-

work (proposed in Chapters 4 and 5) for adversarial cloud data [98],

and iii) robust AI-based perception certificates for obstacle detection

in bad weather with uncertainty quantification.
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Appendix A

Chi-square Tests for Attack
Detection

χ2 test. The χ2 test is widely used in attack detection for stochastic sys-

tems [24, 20]. Given a sample of Gaussian random variable σ̂k with unknown

mean σk and known covariance Σk, the χ2 test provides statistical evidence

of whether σk = 0 or not. In particular, the sample σ̂k is being normal-

ized by σ̂⊤
k Σ

−1
k σ̂k, and we compare the normalized value with χ2

df (α), where

χ2
df (α) is the χ2 value with degree of freedom df and statistical significance

level α. We reject the null hypothesis H0: σk = 0, if σ̂⊤
k Σ

−1
k σ̂k > χ2

df (α),

and accept alternative hypothesis H1: σk ̸= 0, i.e., there is significant statis-

tical evidence that σk is non-zero. Otherwise, we accept H0, i.e., there is no

significant evidence that σk is non-zero.

False negative rate. Given a set of vectors {σk}, the false negative rate of

the χ2 test is defined as the ratio of the number of false negative test results

Nneg and the number of non-zero vectors in the given set Nσk ̸=0

Fneg({σ̂k}, {Σk}) ≜
Nneg

Nσk ̸=0

=

∑
k(1k)

Nσk ̸=0

, (A.1)

where

1k ≜


1, if σ̂⊤

k Σ
−1
k σ̂k ≤ χ2

df (α) and σk ̸= 0

0, otherwise
. (A.2)
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Appendix B

UKF with Sliding Window
Outputs

Algorithm Derivation. Without losing the generality, we consider the

following partially nonlinear systems

xk+1 = Akxk +wk (B.1a)

yk = f(xk) + vk, (B.1b)

where f is a nonlinear function of the system state xk. The noise signals wk

and vk are assumed to be independent and identically distributed Gaussian

random variables with zero means and covariances E[wk(wk)
⊤] = Σw ≥ 0

and E[vkv⊤
k ] = Σv > 0.

Prediction. Given the previous state estimate x̂k−1 and system model Equa-

tion (B.1), the current state can be predicted as

x̂k|k−1 = Ak−1x̂k−1.

Its error covariance matrix is

Pk|k−1 ≜ E[(xk − x̂k|k−1)(xk − x̂k|k−1)
⊤]

= Ak−1Pk−1A
⊤
k−1 +Σw,

where Pk−1 ≜ E[(xk−1 − x̂k−1)(xk−1 − x̂k−1)
⊤] is the state estimation error

covariance matrix.
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Sigma Points Generation. We define a sigma points array

Xk ≜ {x̂k|k−1 ± (
√
nPk|k−1)

⊤
i , i = 1, · · · , n},

where
√
nPk|k−1 is the matrix square root such that

√
nPk|k−1

⊤√
nPk|k−1 =

nPk|k−1, and the matrix operator (·)i gives the ith row of the matrix.

Measurement Update. Given the sliding window size M , the nonlinear

measurement equation f(·) is used to transform the sigma points into pre-

dicted measurement vectors

ŷik = f(X i
k)

ŷik−1 = f(A−1
k−1X

i
k)

...

ŷik−N+1 = f(A−M+1
k−1 X

i
k).

We define ŷik ≜ [ŷik, · · · , ŷik−M+1]
⊤, then the approximated mean of the

measurements is

ȳk ≜
2n∑
i=0

W i
kŷik,

where W i
k are the weighting coefficients.

By taking the measurement noise into account, the estimated covariance

of the predicted measurements is given by:

Py
k ≜

2n∑
i=0

W i
k(ŷik − ȳk)(ŷik − ȳk)⊤ +Σv,

where Σv = diag{Σv, · · · ,Σv} is the diagonal matrix.

The cross covariance between the state prediction and predicted measure-
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ments is

Pxy
k =

2n∑
i=0

W i
k(X i

k − x̂k|k−1)(ŷik − ȳk)⊤,

where X i
k denotes the ith element in Xk.

The measurement yk ≜ [yk, · · · ,yk−M+1]
⊤ is used to update the predic-

tion x̂k|k−1 as

x̂k = x̂k|k−1 +Kk(yk − ȳk).

The covariance matrix of the state estimation error is

Pk = Pk|k−1 −Kk(Pxy
k )⊤ − Pxy

k K⊤
k +KkPy

kK
⊤
k .

The gain matrix Kk is chosen by minimizing the trace norm of Pk, i.e.

minKk
tr (Pk). The solution of the program is given by Kk = Pxy

k (Py
k)

−1.

Note that the prediction step does not need unscented transformation be-

cause the dynamic system Equation (B.1a) is linear. The UKF with sliding

window outputs algorithm is summarized in Algorithm 4.
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Algorithm 4 UKF with sliding window outputs
▷ Prediction

1: x̂k|k−1 = Ak−1x̂k−1;
2: Pk|k−1 = Ak−1Pk−1A

⊤
k−1 +Σw;

▷ Sigma points generation
3: Xk = {x̂k|k−1 ± (

√
nPk|k−1)

⊤
i }, i ∈ {1, · · · , n};

▷ Measurement Update
4: for i = 1 : 2n do
5:

ŷik ≜ [ŷik, ŷ
i
k−1, · · · , ŷik−M+1]

⊤ = [f(X i
k), f(A

−1
k−1X

i
k), · · · , f(A−M+1

k−1 X
i
k)]

⊤;

6: end for
7: ȳk =

∑2n
i=0 W

i
kŷik;

8: Py
k =

∑2n
i=0 W

i
k(ŷik − ȳk)(ŷik − ȳk)⊤ +Σv;

9: Pxy
k =

∑2n
i=0 W

i
k(X i

k − x̂k|k−1)(ŷik − ȳk)⊤;
10: Kk = Pxy

k (Py
k)

−1;
11: x̂k = x̂k|k−1 +Kk(yk − ȳk);
12: Pk = Pk|k−1 −KkPy

kK
⊤
k ;
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Appendix C

Gauss-Markov Theorem

Theorem C.1 (Gauss-Markov Theorem [99]) Given the linear model

y = Hx+ v, where v is a zero-mean random variable with positive-definite

covariance matrix Rv and H is full rank m × n matrix with m ≥ n, the

minimum-variance-unbiased linear estimator of x given y is

x̂ = (H∗R−1
v H)−1H∗R−1

v y.
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